Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 178(5): 1189-1204.e23, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442407

RESUMO

CD8 T cells play essential roles in anti-tumor immune responses. Here, we performed genome-scale CRISPR screens in CD8 T cells directly under cancer immunotherapy settings and identified regulators of tumor infiltration and degranulation. The in vivo screen robustly re-identified canonical immunotherapy targets such as PD-1 and Tim-3, along with genes that have not been characterized in T cells. The infiltration and degranulation screens converged on an RNA helicase Dhx37. Dhx37 knockout enhanced the efficacy of antigen-specific CD8 T cells against triple-negative breast cancer in vivo. Immunological characterization in mouse and human CD8 T cells revealed that DHX37 suppresses effector functions, cytokine production, and T cell activation. Transcriptomic profiling and biochemical interrogation revealed a role for DHX37 in modulating NF-κB. These data demonstrate high-throughput in vivo genetic screens for immunotherapy target discovery and establishes DHX37 as a functional regulator of CD8 T cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , RNA Helicases/genética , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Memória Imunológica , Imunoterapia , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , RNA Helicases/deficiência , RNA Guia de Cinetoplastídeos/metabolismo , Transcriptoma
2.
Nat Immunol ; 20(11): 1494-1505, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31611701

RESUMO

Immunotherapy has transformed cancer treatment. However, current immunotherapy modalities face various limitations. In the present study, we developed multiplexed activation of endogenous genes as an immunotherapy (MAEGI), a new form of immunotherapy that elicits antitumor immunity through multiplexed activation of endogenous genes in tumors. We leveraged CRISPR activation (CRISPRa) to directly augment the in situ expression of endogenous genes, and thereby the presentation of tumor antigens, leading to dramatic antitumor immune responses. Deploying this as a cell-based vaccination strategy showed efficacy in both prophylactic and therapeutic settings. Intratumoral adeno-associated virus delivery of CRISPRa libraries elicited strong antitumor immunity across multiple cancer types. Precision targeting of mutated gene sets eradicated a large fraction of established tumors at both local and distant sites. This treatment modality led to alterations in the tumor microenvironment, marked by enhanced T cell infiltration and antitumor immune signatures. Multiplexed endogenous gene activation is a versatile and highly scalable strategy to elicit potent immune responses against cancer, distinct from all existing cancer therapies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Terapia Genética/métodos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Animais , Apresentação de Antígeno/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Terapia Combinada/métodos , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Células HEK293 , Humanos , Injeções Intralesionais , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
3.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176114

RESUMO

The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a gene panel corresponding to proteins differentially abundant between treatment-sensitive and treatment-resistant cell lines, deciphering predictors of treatment resistance and potential resistance mechanisms to BRAF/MEK inhibitor therapy in patient biopsy samples. From our analysis, a 13-gene signature panel, in both test and validation datasets, could identify treatment-resistant or progressed melanoma cases with an accuracy and sensitivity of over 70%. The dysregulation of HMOX1, ICAM, MMP2, and SPARC defined a BRAF/MEK treatment-resistant landscape, with resistant cases showing a >2-fold risk of expression of these genes. Furthermore, we utilized a combination of functional enrichment- and gene expression-derived scores to model and identify pathways, such as HMOX1-mediated mitochondrial stress response, as potential key drivers of the emergence of a BRAF/MEK inhibitor-resistant state in melanoma cells. Overall, our results highlight the utility of these genes in predicting treatment outcomes and the underlying mechanisms that can be targeted to reduce the development of resistance to BRAF/MEK targeted therapy.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteômica , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
4.
Nat Methods ; 16(3): 247-254, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804551

RESUMO

Immune-cell engineering opens new capabilities for fundamental immunology research and immunotherapy. We developed a system for efficient generation of chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) with considerably enhanced features by streamlined genome engineering. By leveraging trans-activating CRISPR (clustered regularly interspaced short palindromic repeats) RNA (tracrRNA)-independent CRISPR-Cpf1 systems with adeno-associated virus (AAV), we were able to build a stable CAR-T cell with homology-directed-repair knock-in and immune-checkpoint knockout (KIKO CAR-T cell) at high efficiency in one step. The modularity of the AAV-Cpf1 KIKO system enables flexible and highly efficient generation of double knock-in of two different CARs in the same T cell. Compared with Cas9-based methods, the AAV-Cpf1 system generates double-knock-in CAR-T cells more efficiently. CD22-specific AAV-Cpf1 KIKO CAR-T cells have potency comparable to that of Cas9 CAR-T cells in cytokine production and cancer cell killing, while expressing lower levels of exhaustion markers. This versatile system opens new capabilities of T-cell engineering with simplicity and precision.


Assuntos
Dependovirus/genética , Receptores de Antígenos/genética , Linfócitos T/metabolismo , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Humanos , Sequências Repetitivas de Ácido Nucleico , Linfócitos T/imunologia
5.
Nat Methods ; 16(5): 405-408, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962622

RESUMO

Systematic investigation of the genetic interactions that influence metastatic potential has been challenging. Here we developed massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling (MCAP), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934 arrays targeting 325 pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions that drive metastasis.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Metástase Neoplásica/genética , Animais , Proteína 9 Associada à CRISPR/genética , Linhagem Celular Tumoral , Camundongos , Análise de Sequência de RNA
6.
J Biol Chem ; 288(5): 3460-8, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23229555

RESUMO

Caspase-activated DNase (CAD) is the most favorable candidate for chromatin degradation during apoptosis. Ca(2+)-dependent endonucleases are equally important in internucleosomal DNA fragmentation (INDF), including the PARP-1-regulated DNAS1L3. Despite the elaborate work on these endonucleases, the question of whether these enzymes cooperate during INDF was not addressed. Here, we show a lack of correlation between INDF and CAD expression levels and inactivation by cleavage of its inhibitor (ICAD) during apoptosis. The cells that failed to induce INDF accumulated large amounts of 50-kb breaks, which is suggestive of incomplete chromatin processing. Similarly, INDF was blocked by Ca(2+) chelation without a block in ICAD cleavage or caspase-3 activation, which is consistent with the involvement of CAD in 50-kb DNA fragmentation and its Ca(2+) independence. However, DNAS1L3 expression in INDF-deficient cells promoted INDF during apoptosis and was blocked by Ca(2+) chelation. Interestingly, expression of DNAS1L3 in ICAD-deficient cells failed to promote tumor necrosis factor α-induced INDF but required the coexpression of ICAD. These results suggest a cooperative activity between CAD and DNAS1L3 to accomplish INDF. In HT-29 cells, endogenous DNAS1L3 localized to the endoplasmic reticulum (ER) and translocated to the nucleus upon apoptosis induction but prior to INDF manifestation, making it the first reported Ca(2+)-dependent endonuclease to migrate from the ER to the nucleus. The nuclear accumulation of DNAS1L3, but not its exit out of the ER, required the activity of cysteine and serine proteases. Interestingly, the endonuclease accumulated in the cytosol upon inhibition of serine, but not cysteine, proteases. These results exemplify the complexity of chromatin degradation during apoptosis.


Assuntos
Apoptose , Núcleo Celular/enzimologia , Fragmentação do DNA , Desoxirribonucleases/metabolismo , Endodesoxirribonucleases/metabolismo , Retículo Endoplasmático/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Pareamento de Bases , Cálcio/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Cisteína Proteases/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Etoposídeo , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Camundongos , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Inibidores de Proteases/farmacologia , Transporte Proteico/efeitos dos fármacos , Serina Proteases/metabolismo
7.
J Biol Chem ; 288(3): 1458-68, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23184953

RESUMO

Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N'-nitro-N-nitroso-guanidine-treated mice or H(2)O(2)-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production.


Assuntos
Asma/tratamento farmacológico , Fator de Transcrição GATA3/genética , Fatores Imunológicos/uso terapêutico , Inflamação/tratamento farmacológico , Interleucina-4/genética , Minociclina/uso terapêutico , NF-kappa B/genética , Receptores de Antígenos de Linfócitos T/genética , Animais , Asma/complicações , Asma/genética , Asma/imunologia , Fator de Transcrição GATA3/agonistas , Fator de Transcrição GATA3/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Fatores Imunológicos/farmacologia , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Interleucina-4/antagonistas & inibidores , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/farmacologia , NF-kappa B/agonistas , NF-kappa B/imunologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/imunologia , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/efeitos dos fármacos
8.
Gland Surg ; 13(1): 4-18, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323236

RESUMO

Background: Radiofrequency ablation (RFA) utilizes minimally invasive high-energy current to precisely ablate tumor cells. It has been utilized in many cancer types including thyroid, lung, and liver cancer. It has been shown to provide adequate ablative margins with minimal complications; however, incomplete RFA may lead to recurrence of tumor. The underlying cellular mechanism and behavior of ablated cancer tissue is poorly understood. Methods: A systematic review was performed, searching EMBASE, Web of Science, PubMed, and Scopus for studies published up to March 2022 and reported following PRISMA guidelines. Collection was performed by two groups of investigators to avoid risk of bias. The Cochrane Collaboration's tool was used for assessing risk of bias. We identified human, in vivo, and in vitro research studies utilizing RFA for tumor tissues. We required that the studies included at least one of the following: complications, recurrence, or survival, and took interest to studies identifying cellular signaling pathway patterns after RFA. Descriptive statistical analysis was performed in 'R' software including mean and confidence interval. Results: The most frequent cancers studied were liver and lung cancers accounting for 57.4% (N=995) and 15.4% (N=267), followed by esophageal (N=190) and breast cancer (N=134). The most common reported complications were bleeding (19%) and post-operative pain (14%). In our literature search, four independent studies showed upregulation and activation of the VEGF pathway following RFA, four showed upregulation and activation of the AKT pathway following RFA, three studies demonstrated involvement of matrix metalloproteinases, and four showed upregulation of c-Met protein following RFA. Conclusions: In our review and meta-analysis, we identify several proteins and pathways of interest of which are important in wound healing, angiogenesis, and cellular growth and survival. These proteins and pathways of interest may implicate areas of research towards RFA resistance and cancer recurrence.

9.
Aging Dis ; 14(3): 992-1012, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191407

RESUMO

Aging modifies risk in all cancers, but age is used as a clinical staging criterion uniquely in thyroid cancer (TC). The molecular drivers of age-dependent TC onset and aggressiveness remain poorly understood. We applied an integrative, multi-omics data analysis approach to characterize these signatures. Our analysis reveals that aging, independent of BRAFV600E mutational status, drives a significant accumulation of aggressiveness-related markers and poorer survival outcomes, most noticeably at age 55 and over. We identified that chromosomal alterations in loci 1p/1q as aging-associated drivers of aggressiveness, and that depleted infiltration with tumor surveillant CD8+T and follicular helper T cells, dysregulation of proteostasis- and senescence-related processes, and ERK1/2 signaling cascade are key features of the aging thyroid and TC onset/progression and aggressiveness in aging patients but not in young individuals. A panel of 23 genes, including those related to cell division such as CENPF, ERCC6L, and the kinases MELK and NEK2, were identified and rigorously characterized as aging-dependent and aggressiveness-specific markers. These genes effectively stratified patients into aggressive clusters with distinct phenotypic enrichment and genomic/transcriptomic profiles. This panel also showed excellent performance in predicting metastasis stage, BRAFV600E, TERT promoter mutation, and survival outcomes and was superior to the American Thyroid Association (ATA) methodology in predicting aggressiveness risk. Our analysis established clinically relevant biomarkers for TC aggressiveness factoring in aging as an important component.

10.
Cancer Immunol Res ; 11(8): 1068-1084, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37253111

RESUMO

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we investigated whether it is possible to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism whereby cancer cells suppress T-cell function by generating a metabolically unfavorable tumor microenvironment (TME). In an in silico screen, we identified ADA and PDK1 as metabolic regulators. We then showed that overexpression (OE) of these genes enhanced the cytolysis of CD19-specific chimeric antigen receptor (CAR) T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampened this effect. ADA-OE in CAR T cells improved cancer cytolysis under high concentrations of adenosine, the ADA substrate, and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics analysis of these CAR T cells revealed alterations of global gene expression and metabolic signatures in both ADA- and PDK1-engineered CAR T cells. Functional and immunologic analyses demonstrated that ADA-OE increased proliferation and decreased exhaustion in CD19-specific and HER2-specific CAR T cells. ADA-OE improved tumor infiltration and clearance by HER2-specific CAR T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR T cells and reveal potential targets for improving CAR T-cell therapy.


Assuntos
Neoplasias , Linfócitos T , Humanos , Imunogenética , Imunoterapia Adotiva , Metabolômica , Microambiente Tumoral
11.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993638

RESUMO

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we seek to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism, whereby cancer cells suppress T cell function by generating a metabolically unfavorable tumor microenvironment (TME). Specifically, we use an in silico screen to identify ADA and PDK1 as metabolic regulators, in which gene overexpression (OE) enhances the cytolysis of CD19-specific CD8 CAR-T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampens such effect. ADA -OE in CAR-T cells improves cancer cytolysis under high concentrations of adenosine, the ADA substrate and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics in these CAR-Ts reveal alterations of global gene expression and metabolic signatures in both ADA- and PDK1- engineered CAR-T cells. Functional and immunological analyses demonstrate that ADA -OE increases proliferation and decreases exhaustion in α-CD19 and α-HER2 CAR-T cells. ADA-OE improves tumor infiltration and clearance by α-HER2 CAR-T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR-T cells, and reveal potential targets for improving CAR-T based cell therapy. Synopsis: The authors identify the adenosine deaminase gene (ADA) as a regulatory gene that reprograms T cell metabolism. ADA-overexpression (OE) in α-CD19 and α-HER2 CAR-T cells increases proliferation, cytotoxicity, memory, and decreases exhaustion, and ADA-OE α-HER2 CAR-T cells have enhanced clearance of HT29 human colorectal cancer tumors in vivo .

12.
J Immunol ; 185(5): 3076-85, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20668217

RESUMO

The role of inducible NO synthase (iNOS) in allergic airway inflammation remains elusive. We tested the hypothesis that iNOS plays different roles during acute versus chronic airway inflammation. Acute and chronic mouse models of OVA-induced airway inflammation were used to conduct the study. We showed that iNOS deletion was associated with a reduction in eosinophilia, mucus hypersecretion, and IL-5 and IL-13 production upon the acute protocol. Such protection was completely abolished upon the chronic protocol. Interestingly, pulmonary fibrosis observed in wild-type mice under the chronic protocol was completely absent in iNOS(-/-) mice despite persistent IL-5 and IL-13 production, suggesting that these cytokines were insufficient for pulmonary fibrosis. Such protection was associated with reduced collagen synthesis and indirect but severe TGF-beta modulation as confirmed using primary lung smooth muscle cells. Although activation of matrix metalloproteinase-2/-9 exhibited little change, the large tissue inhibitor of metalloproteinase-2 (TIMP-2) increase detected in wild-type mice was absent in the iNOS(-/-) counterparts. The regulatory effect of iNOS on TIMP-2 may be mediated by peroxynitrite, as the latter reversed TIMP-2 expression in iNOS(-/-) lung smooth muscle cells and fibroblasts, suggesting that the iNOS-TIMP-2 link may explain the protective effect of iNOS-knockout against pulmonary fibrosis. Analysis of lung sections from chronically OVA-exposed iNOS(-/-) mice revealed evidence of residual but significant protein nitration, prevalent oxidative DNA damage, and poly(ADP-ribose) polymerase-1 activation. Such tissue damage, inflammatory cell recruitment, and mucus hypersecretion may be associated with substantial arginase expression and activity. The results in this study exemplify the complexity of the role of iNOS in asthma and the preservation of its potential as a therapeutic a target.


Assuntos
Alérgenos/administração & dosagem , Mediadores da Inflamação/fisiologia , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/fisiologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Doença Aguda , Alérgenos/toxicidade , Animais , Células Cultivadas , Galinhas , Eosinofilia/imunologia , Eosinofilia/prevenção & controle , Deleção de Genes , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Interleucina-13/antagonistas & inibidores , Interleucina-13/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/imunologia , Muco/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Ovalbumina/administração & dosagem , Ovalbumina/toxicidade , Fibrose Pulmonar/enzimologia
13.
J Immunol ; 185(3): 1894-902, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20610652

RESUMO

The role of NF-kappaB in the expression of inflammatory genes and its participation in the overall inflammatory process of chronic diseases and acute tissue injury are well established. We and others have demonstrated a critical involvement of poly(ADP-ribose) polymerase (PARP)-1 during inflammation, in part, through its relationship with NF-kappaB. However, the mechanism by which PARP-1 affects NF-kappaB activation has been elusive. In this study, we show that PARP-1 inhibition by gene knockout, knockdown, or pharmacologic blockade prevented p65 NF-kappaB nuclear translocation in smooth muscle cells upon TLR4 stimulation, NF-kappaB DNA-binding activity, and subsequent inducible NO synthase and ICAM-1 expression. Such defects were reversed by reconstitution of PARP-1 expression. PARP-1 was dispensable for LPS-induced IkappaBalpha phosphorylation and subsequent degradation but was required for p65 NF-kappaB phosphorylation. A perinuclear p65 NF-kappaB localization in LPS-treated PARP-1(-/-) cells was associated with an export rather an import defect. Indeed, whereas PARP-1 deficiency did not alter expression of importin alpha3 and importin alpha4 and their cytosolic localization, the cytosolic levels of exportin (Crm)-1 were increased. Crm1 inhibition promoted p65 NF-kappaB nuclear accumulation as well as reversed LPS-induced p65 NF-kappaB phosphorylation and inducible NO synthase and ICAM-1 expression. Interestingly, p65 NF-kappaB poly(ADP-ribosyl)ation decreased its interaction with Crm1 in vitro. Pharmacologic inhibition of PARP-1 increased p65 NF-kappaB-Crm1 interaction in LPS-treated smooth muscle cells. These results suggest that p65 NF-kappaB poly(ADP-ribosyl)ation may be a critical determinant for the interaction with Crm1 and its nuclear retention upon TLR4 stimulation. These results provide novel insights into the mechanism by which PARP-1 promotes NF-kappaB nuclear retention, which ultimately can influence NF-kappaB-dependent gene regulation.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptor 4 Toll-Like/fisiologia , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Animais , Linhagem Celular , Núcleo Celular/enzimologia , Núcleo Celular/imunologia , Células Cultivadas , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica/imunologia , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Carioferinas/antagonistas & inibidores , Lipopolissacarídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/deficiência , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/fisiologia , Proteína Exportina 1
14.
Cancers (Basel) ; 14(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35053476

RESUMO

BACKGROUND: Previously, we have demonstrated that nuclear BRAFV600E is associated with melanoma aggressiveness and vemurafenib resistance. However, the underlying mechanisms of how nuclear localization of BRAFV600E promotes cell aggressiveness have not yet been investigated. Despite therapeutic advancements targeting cutaneous melanoma, unknown cellular processes prevent effective treatment for this malignancy, prompting an urgent need to identify new biological targets. This study aims to explore the association of inducible heme oxygenase 1 (HMOX-1) with nuclear BRAFV600E in promoting melanoma aggressiveness. METHODS: Proteomics analysis was performed to identify the interacting partner(s) of nuclear BRAFV600E. Immunohistochemistry was applied to evaluate the levels of HMOX-1 and nuclear BRAFV600E expression in melanoma and adjacent healthy tissues. Immunofluorescence assessed the nuclear localization of BRAFV600E in vemurafenib-resistant A375R melanoma cells. Further study of HMOX-1 knockdown or BRAFV600E overexpression in melanoma cells suggested a role for HMOX-1 in the regulation of cell proliferation in vivo and in vitro. Finally, Western blot analysis was performed to confirm the pathway by which HMOX-1 mediates Akt signaling. RESULTS: Proteomics results showed that HMOX-1 protein expression was 10-fold higher in resistant A375R cells compared to parental counterpart cells. In vitro and in vivo results illustrate that nuclear BRAFV600E promotes HMOX-1 overexpression, whereas HMOX-1 reduction represses melanoma cell proliferation and tumor growth. Mechanistic studies revealed that HMOX-1 was associated with nuclear BRAFV600E localization, thus promoting melanoma proliferation via a persistent activation of the AKT pathway. CONCLUSIONS: Our results highlight a previously unknown mechanism in which the nuclear BRAFV600E/HMOX-1/AKT axis plays an essential role in melanoma cell proliferation. Targeting HMOX-1 could be a novel method for treating melanoma patients who develop BRAF inhibitor resistance.

15.
Am J Cancer Res ; 12(7): 3014-3033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968344

RESUMO

The presence of mutant BRAF V600E correlates with the risk of recurrence in papillary thyroid cancer (PTC) patients. However, not all PTC patients with BRAF V600E are associated with poor prognosis. Thus, understanding the mechanisms by which certain PTC patients with nuclear BRAF V600E become aggressive and develop resistance to a selective BRAF inhibitor, PLX-4032, is urgently needed. The effect of nuclear localization of BRAFV600E using in vitro studies, xenograft mouse-model and human tissues was evaluated. PTC cells harboring a nuclear localization signal (NLS) of BRAFV600E were established and examined in nude mice implanted with TPC1-NLS-BRAFV600E cells followed by PLX-4032 treatment. Immunohistochemical (IHC) analysis was performed on 100 PTC specimens previously confirmed that they have BRAFV600E mutations. Our results demonstrate that 21 of 100 (21%) PTC tissues stained with specific BRAFV600E antibody had nuclear staining with more aggressive features compared to their cytosolic counterparts. In vitro studies show that BRAFV600E is transported between the nucleus and the cytosol through CRM1 and importin (α/ß) system. Sequestration of BRAFV600E in the cytosol sensitized resistant cells to PLX-4032, whereas nuclear BRAFV600E was associated with aggressive phenotypes and developed drug resistance. Proteomic analysis revealed Arp2/3 complex members, actin-related protein 2 (ACTR2 aliases ARP2) and actin-related protein 3 (ACTR3 aliases ARP3), as the most enriched nuclear BRAFV600E partners. ACTR3 was highly correlated to lymph node stage and extrathyroidal extension and was validated with different functional assays. Our findings provide new insights into the clinical utility of the nuclear BRAFV600E as a prognostic marker for PTC aggressiveness and determine the efficacy of selective BRAFV600E inhibitor treatment which opens new avenues for future treatment options.

16.
Cell Metab ; 34(4): 595-614.e14, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276062

RESUMO

Chimeric antigen receptor (CAR)-T cell-based immunotherapy for cancer and immunological diseases has made great strides, but it still faces multiple hurdles. Finding the right molecular targets to engineer T cells toward a desired function has broad implications for the armamentarium of T cell-centered therapies. Here, we developed a dead-guide RNA (dgRNA)-based CRISPR activation screen in primary CD8+ T cells and identified gain-of-function (GOF) targets for CAR-T engineering. Targeted knockin or overexpression of a lead target, PRODH2, enhanced CAR-T-based killing and in vivo efficacy in multiple cancer models. Transcriptomics and metabolomics in CAR-T cells revealed that augmenting PRODH2 expression reshaped broad and distinct gene expression and metabolic programs. Mitochondrial, metabolic, and immunological analyses showed that PRODH2 engineering enhances the metabolic and immune functions of CAR-T cells against cancer. Together, these findings provide a system for identification of GOF immune boosters and demonstrate PRODH2 as a target to enhance CAR-T efficacy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T CD8-Positivos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Mutação com Ganho de Função , Humanos , Prolina , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
17.
Cancers (Basel) ; 14(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077665

RESUMO

Papillary thyroid carcinomas (PTCs) account for most endocrine tumors; however, screening and diagnosing the recurrence of PTC remains a clinical challenge. Using microRNA sequencing (miR-seq) to explore miRNA expression profiles in PTC tissues and adjacent normal tissues, we aimed to determine which miRNAs may be associated with PTC recurrence and metastasis. Public databases such as TCGA and GEO were utilized for data sourcing and external validation, respectively, and miR-seq results were validated using quantitative real-time PCR (qRT-PCR). We found miR-145 to be significantly downregulated in tumor tissues and blood. Deregulation was significantly related to clinicopathological features of PTC patients including tumor size, lymph node metastasis, TNM stage, and recurrence. In silico data analysis showed that miR-145 can negatively regulate multiple genes in the TC signaling pathway and was associated with cell apoptosis, proliferation, stem cell differentiation, angiogenesis, and metastasis. Taken together, the current study suggests that miR-145 may be a biomarker for PTC recurrence. Further mechanistic studies are required to uncover its cellular roles in this regard.

18.
J Biol Chem ; 285(52): 41152-60, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20966071

RESUMO

The DNA binding activity of NF-κB is critical for VCAM-1 expression during inflammation. DNA-dependent protein kinase (DNA-PK) is thought to be involved in NF-κB activation. Here we show that DNA-PK is required for VCAM-1 expression in response to TNF. The phosphorylation and subsequent degradation of I-κBα as well as the serine 536 phosphorylation and nuclear translocation of p65 NF-κB were insufficient for VCAM-1 expression in response to TNF. The requirement for p50 NF-κB in TNF-induced VCAM-1 expression may be associated with its interaction with and phosphorylation by DNA-PK, which appears to be dominant over the requirement for p65 NF-κB activation. p50 NF-κB binding to its consensus sequence increased its susceptibility to phosphorylation by DNA-PK. Additionally, DNA-PK activity appeared to increase the association between p50/p50 and p50/p65 NF-κB dimers upon binding to DNA and after binding of p50 NF-κB to the VCAM-1 promoter. Analyses of the p50 NF-κB protein sequence revealed that both serine 20 and serine 227 at the amino terminus of the protein are putative sites for phosphorylation by DNA-PK. Mutation of serine 20 completely eliminated phosphorylation of p50 NF-κB by DNA-PK, suggesting that serine 20 is the only site in p50 NF-κB for phosphorylation by DNA-PK. Re-establishing wild-type p50 NF-κB, but not its serine 20/alanine mutant, in p50 NF-κB(-/-) fibroblasts reversed VCAM-1 expression after TNF treatment, demonstrating the importance of the serine 20 phosphorylation site in the induction of VCAM-1 expression. Together, these results elucidate a novel mechanism for the involvement of DNA-PK in the positive regulation of p50 NF-κB to drive VCAM-1 expression.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/biossíntese , Animais , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Knockout , Subunidade p50 de NF-kappa B/genética , Proteínas Nucleares/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Elementos de Resposta/fisiologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
19.
Mol Med ; 17(9-10): 893-900, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21607289

RESUMO

Cordycepin has been shown to interfere with a myriad of molecular processes from RNA elongation to kinase activity, and prevents numerous inflammatory processes in animal models. Here we show in a mouse model of LPS-induced acute lung injury that cordycepin prevents airway neutrophilia via a robust blockade of expression of several inflammatory genes, including the adhesion molecule ICAM-1 and VCAM-1, the cytokine/chemokine MCP-1, MIP-1α, MIP-2 and KC, and the chemokine receptor CXCR2. Such a blockade appears to be related to a severe reduction in TNF-α expression. Interestingly, in an in vitro system of A549 epithelial cell inflammation, cordycepin effectively blocked LPS-induced, but not TNF-α-induced, VCAM-1 expression. Such effects correlated with a marked reduction in p65-NF-κB activation as assessed by its phosphorylation at serine-536 but without an apparent effect on its nuclear translocation. The effects of cordycepin on the expression of VCAM-1 and ICAM-1, and of NF-κB activation and nuclear translocation upon TNF-α stimulation resembled the effects achieved upon poly(ADP-ribose) polymerase (PARP) inhibition, suggesting that cordycepin may function as a PARP inhibitor. Indeed, cordycepin blocked H(2)O(2)-induced PARP activation in A549 cells. In a cell-free system, cordycepin inhibited PARP-1 activity at nanomolar concentrations. Similar to PARP inhibitors, cordycepin significantly induced killing of breast cancer susceptibility gene (BRCA1)-deficient MCF-7 cells, supporting its therapeutic use for the treatment of BRCA-deficient breast cancers. With added antiinflammatory characteristics, therapies that include cordycepin may prevent potential inflammation triggered by traditional chemotherapeutic drugs. Cordycepin, to the best of our knowledge, represents the first natural product possessing PARP inhibitory traits.


Assuntos
Desoxiadenosinas/farmacologia , Pulmão/efeitos dos fármacos , Pneumonia/prevenção & controle , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Antineoplásicos/farmacologia , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
Cancers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572876

RESUMO

To identify molecular markers that can accurately predict aggressive tumor behavior at the time of surgery, a propensity-matching score analysis of archived specimens yielded two similar datasets of DTC patients (with and without RAI). Bioinformatically selected microRNAs were quantified by qRT-PCR. The risk score was generated using Cox regression and assessed using ROC, C-statistic, and Brier-score. A predictive Bayesian nomogram was established. External validation was performed, and causal network analysis was generated. Within the eight-year follow-up period, progression was reported in 51.5% of cases; of these, 48.6% had the T1a/b stage. Analysis showed upregulation of miR-221-3p and miR-222-3p and downregulation of miR-204-5p in 68 paired cancer tissues (p < 0.001). These three miRNAs were not differentially expressed in RAI and non-RAI groups. The ATA risk score showed poor discriminative ability (AUC = 0.518, p = 0.80). In contrast, the microRNA-based risk score showed high accuracy in predicting tumor progression in the whole cohorts (median = 1.87 vs. 0.39, AUC = 0.944) and RAI group (2.23 vs. 0.37, AUC = 0.979) at the cutoff >0.86 (92.6% accuracy, 88.6% sensitivity, 97% specificity) in the whole cohorts (C-statistics = 0.943/Brier = 0.083) and RAI subgroup (C-statistic = 0.978/Brier = 0.049). The high-score group had a three-fold increased progression risk (hazard ratio = 2.71, 95%CI = 1.86-3.96, p < 0.001) and shorter survival times (17.3 vs. 70.79 months, p < 0.001). Our prognostic microRNA signature and nomogram showed excellent predictive accuracy for progression-free survival in DTC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa