Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38095299

RESUMO

Binocular vision requires the segregation of retinal ganglion cell (RGC) axons extending from the retina into the ipsilateral and contralateral optic tracts. RGC axon segregation occurs at the optic chiasm, which forms at the ventral diencephalon midline. Using expression analyses, retinal explants and genetically modified mice, we demonstrate that CXCL12 (SDF1) is required for axon segregation at the optic chiasm. CXCL12 is expressed by the meninges bordering the optic pathway, and CXCR4 by both ipsilaterally and contralaterally projecting RGCs. CXCL12 or ventral diencephalon meninges potently promoted axon outgrowth from both ipsilaterally and contralaterally projecting RGCs. Further, a higher proportion of axons projected ipsilaterally in mice lacking CXCL12 or its receptor CXCR4 compared with wild-type mice as a result of misrouting of presumptive contralaterally specified RGC axons. Although RGCs also expressed the alternative CXCL12 receptor ACKR3, the optic chiasm developed normally in mice lacking ACKR3. Our data support a model whereby meningeal-derived CXCL12 helps drive axon growth from CXCR4-expressing RGCs towards the diencephalon midline, enabling contralateral axon growth. These findings further our understanding of the molecular and cellular mechanisms controlling optic pathway development.


Assuntos
Quiasma Óptico , Células Ganglionares da Retina , Animais , Camundongos , Axônios/metabolismo , Diencéfalo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Vias Visuais
2.
Dev Dyn ; 250(9): 1340-1357, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33347679

RESUMO

BACKGROUND: Slits (1-3) and their Robo (1-3) receptors play multiple non-neuronal roles in development, including in development of muscle, heart and mammary gland. Previous work has demonstrated expression of Slit and Robo family members during limb development, where their functions are unclear. RESULTS: In situ hybridisation confirmed strong expression of Slit2, Slit3, Robo1, and Robo2 throughout mouse limb and joint development. No expression of Slit1 or Robo3 was detected. Analysis of Slit1/2 or Slit3 knockout mice revealed normal limb development. In contrast, locally blocking Slit signaling though grafting of cells expressing a dominant-negative Robo2 construct in the proximo-central region of developing chicken limb buds caused significant shortening of the humerus. CONCLUSIONS: These findings demonstrate an essential role for Slit/Robo signaling in regulating bone length during chicken limb development.


Assuntos
Proteínas do Tecido Nervoso , Receptores Imunológicos , Animais , Galinhas , Úmero/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética
3.
Semin Cell Dev Biol ; 85: 48-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174916

RESUMO

In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision.


Assuntos
Orientação de Axônios , Axônios/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Animais , Humanos
4.
Development ; 145(19)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305274

RESUMO

Absence of the developing lens results in severe eye defects, including substantial reductions in eye size. How the lens controls eye expansion and the underlying signalling pathways are very poorly defined. We identified RDH10, a gene crucial for retinoic acid synthesis during embryogenesis, as a key factor downregulated in the peripheral retina (presumptive ciliary body region) of lens-removed embryonic chicken eyes prior to overt reductions in eye size. This is associated with a significant decrease in retinoic acid synthesis by lens-removed eyes. Restoring retinoic acid signalling in lens-removed eyes by implanting beads soaked in retinoic acid or retinal, but not vitamin A, rescued eye size. Conversely, blocking retinoic acid synthesis decreased eye size in lens-containing eyes. Production of collagen II and collagen IX, which are major vitreal proteins, is also regulated by the lens and retinoic acid signalling. These data mechanistically link the known roles of both the lens and retinoic acid in normal eye development, and support a model whereby retinoic acid production by the peripheral retina acts downstream of the lens to support vitreous production and eye expansion.


Assuntos
Cristalino/embriologia , Cristalino/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Embrião de Galinha , Corpo Ciliar/efeitos dos fármacos , Corpo Ciliar/metabolismo , Colágeno/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Cristalino/anatomia & histologia , Cristalino/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Tenascina/metabolismo , Tretinoína/farmacologia , Vitamina A/farmacologia
5.
Development ; 144(13): 2504-2516, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28676569

RESUMO

Visual information is relayed from the eye to the brain via retinal ganglion cell (RGC) axons. Mice lacking NRP1 or NRP1-binding VEGF-A isoforms have defective RGC axon organisation alongside brain vascular defects. It is not known whether axonal defects are caused exclusively by defective VEGF-A signalling in RGCs or are exacerbated by abnormal vascular morphology. Targeted NRP1 ablation in RGCs with a Brn3bCre knock-in allele reduced axonal midline crossing at the optic chiasm and optic tract fasciculation. In contrast, Tie2-Cre-mediated endothelial NRP1 ablation induced axon exclusion zones in the optic tracts without impairing axon crossing. Similar defects were observed in Vegfa120/120 and Vegfa188/188 mice, which have vascular defects as a result of their expression of single VEGF-A isoforms. Ectopic midline vascularisation in endothelial Nrp1 and Vegfa188/188 mutants caused additional axonal exclusion zones within the chiasm. As in vitro and in vivo assays demonstrated that vessels do not repel axons, abnormally large or ectopically positioned vessels are likely to present physical obstacles to axon growth. We conclude that proper axonal wiring during brain development depends on the precise molecular control of neurovascular co-patterning.


Assuntos
Axônios/metabolismo , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Neuropilina-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Padronização Corporal , Diencéfalo/embriologia , Diencéfalo/metabolismo , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Neovascularização Fisiológica , Quiasma Óptico/embriologia , Quiasma Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Vias Visuais/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(7): 1702-1707, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137836

RESUMO

Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscamdel17 ; Dscam2J), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets.


Assuntos
Fasciculação Axônica/genética , Moléculas de Adesão Celular/genética , Células Ganglionares da Retina/metabolismo , Vias Visuais/metabolismo , Animais , Axônios/metabolismo , Células COS , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Regulação da Expressão Gênica no Desenvolvimento , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Hibridização In Situ , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Quiasma Óptico/embriologia , Quiasma Óptico/metabolismo , Retina/embriologia , Retina/metabolismo
7.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277365

RESUMO

Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm-to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.


Assuntos
Visão Binocular/fisiologia , Vias Visuais/fisiologia , Animais , Axônios/metabolismo , Encéfalo/anatomia & histologia , Linhagem da Célula , Humanos , Células Ganglionares da Retina/metabolismo
8.
Dev Dyn ; 247(11): 1217-1226, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30225906

RESUMO

BACKGROUND: While data regarding expression of limb element and tissue markers during normal mouse limb development exist, few studies show expression patterns in upper and lower limbs throughout key limb development stages. A comparison to normal developmental events is essential when analyzing development of the limb in mutant mice models. RESULTS: Expression patterns of the joint marker Gdf5, tendon and ligament marker Scleraxis, early muscle marker MyoD1, and blood vessel marker Cadherin5 (Cdh5) are presented during the most active phases of embryonic mouse limb patterning. Anti-neurofilament staining of developing nerves in the fore- and hindlimbs and cartilage formation and progression also are described. CONCLUSIONS: This study demonstrates and describes a range of key morphological markers and methods that together can be used to assess normal and abnormal limb development. Developmental Dynamics 247:1217-1226, 2018. © 2018 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Assuntos
Desenvolvimento Embrionário/fisiologia , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Animais , Antígenos CD/metabolismo , Biomarcadores , Padronização Corporal , Caderinas/metabolismo , Condrogênese , Embrião de Mamíferos , Extremidades/inervação , Fator 5 de Diferenciação de Crescimento/metabolismo , Filamentos Intermediários/metabolismo , Camundongos , Proteína MyoD/metabolismo
9.
Development ; 142(2): 314-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25519242

RESUMO

The vascular endothelial growth factor (VEGFA, VEGF) regulates neurovascular patterning. Alternative splicing of the Vegfa gene gives rise to three major isoforms termed VEGF121, VEGF165 and VEGF189. VEGF165 binds the transmembrane protein neuropilin 1 (NRP1) and promotes the migration, survival and axon guidance of subsets of neurons, whereas VEGF121 cannot activate NRP1-dependent neuronal responses. By contrast, the role of VEGF189 in NRP1-mediated signalling pathways has not yet been examined. Here, we have combined expression studies and in situ ligand-binding assays with the analysis of genetically altered mice and in vitro models to demonstrate that VEGF189 can bind NRP1 and promote NRP1-dependent neuronal responses.


Assuntos
Encéfalo/embriologia , Modelos Neurológicos , Neurônios/fisiologia , Neuropilina-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Encéfalo/citologia , Hibridização In Situ , Camundongos , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
10.
J Anat ; 232(4): 568-574, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29023763

RESUMO

Thalidomide notoriously caused severe birth defects, particularly to the limbs, in those exposed in utero following maternal use of the drug to treat morning sickness. How the drug caused these birth defects remains unclear. Many theories have been proposed including actions on the forming blood vessels. However, thalidomide survivors also have altered nerve patterns and the drug is known for its neurotoxic actions in adults following prolonged use. We have previously shown that CPS49, an anti-angiogenic analog of thalidomide, causes a range of limb malformations in a time-sensitive manner in chicken embryos. Here we investigated whether CPS49 also is neurotoxic and whether effects on nerve development impact upon limb development. We found that CPS49 is neurotoxic, just like thalidomide, and can cause some neuronal loss late developing chicken limbs, but only when the limb is already innervated. However, CPS49 exposure does not cause defects in limb size when added to late developing chicken limbs. In contrast, in early limb buds which are not innervated, CPS49 exposure affects limb area significantly. To investigate in more detail the role of neurotoxicity and its impact on chicken limb development we inhibited nerve innervation at a range of developmental timepoints through using ß-bungarotoxin. We found that neuronal inhibition or ablation before, during or after limb outgrowth and innervation does not result in obvious limb cartilage patterning or number changes. We conclude that while CPS49 is neurotoxic, given the late innervation of the developing limb, and that neuronal inhibition/ablation throughout limb development does not cause similar limb patterning anomalies to those seen in thalidomide survivors, nerve defects are not the primary underlying cause of the severe limb patterning defects induced by CPS49/thalidomide.


Assuntos
Inibidores da Angiogênese/toxicidade , Padronização Corporal/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Deformidades Congênitas dos Membros/induzido quimicamente , Crescimento Neuronal/efeitos dos fármacos , Teratogênicos/toxicidade , Talidomida/análogos & derivados , Animais , Bungarotoxinas/farmacologia , Embrião de Galinha , Extremidades/embriologia , Extremidades/inervação , Feminino , Botões de Extremidades/inervação , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas , Talidomida/toxicidade
11.
Proc Natl Acad Sci U S A ; 110(31): 12703-8, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858438

RESUMO

Thalidomide and its analog, Lenalidomide, are in current use clinically for treatment of multiple myeloma, complications of leprosy and cancers. An additional analog, Pomalidomide, has recently been licensed for treatment of multiple myeloma, and is purported to be clinically more potent than either Thalidomide or Lenalidomide. Using a combination of zebrafish and chicken embryos together with in vitro assays we have determined the relative anti-inflammatory activity of each compound. We demonstrate that in vivo embryonic assays Pomalidomide is a significantly more potent anti-inflammatory agent than either Thalidomide or Lenalidomide. We tested the effect of Pomalidomide and Lenalidomide on angiogenesis, teratogenesis, and neurite outgrowth, known detrimental effects of Thalidomide. We found that Pomalidomide, displays a high degree of cell specificity, and has no detectable teratogenic, antiangiogenic or neurotoxic effects at potent anti-inflammatory concentrations. This is in marked contrast to Thalidomide and Lenalidomide, which had detrimental effects on blood vessels, nerves, and embryonic development at anti-inflammatory concentrations. This work has implications for Pomalidomide as a treatment for conditions Thalidomide and Lenalidomide treat currently.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Neuritos/metabolismo , Neurotoxinas , Teratogênicos , Talidomida/análogos & derivados , Peixe-Zebra/embriologia , Animais , Embrião de Galinha , Galinhas , Lenalidomida , Especificidade da Espécie , Talidomida/farmacologia
12.
Dev Biol ; 361(2): 326-37, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22063212

RESUMO

Cell adhesion molecules (CAMs) provide identifying cues by which neural architecture is sculpted. The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for many neurodevelopmental processes in different species and also has several potential mechanisms of activity, including homophilic adhesion, homophilic repulsion and heterophilic interactions. In the mouse retina, Dscam is expressed in many, but not all neuronal subtypes. Mutations in Dscam cause the fasciculation of dendrites of neighboring homotypic neurons, indicating a role in self-avoidance among cells of a given type, a disruption of the non-random patterning of their cell bodies, and a decrease in developmental cell death in affected cell populations. In order to address how DSCAM facilitates retinal pattering, we developed a conditional allele of Dscam to use alongside existing Dscam mutant mouse strains. Conditional deletion of Dscam reproduces cell spacing, cell number and dendrite arborization defects. Inducible deletion of Dscam and retinal ganglion cell depletion in Brn3b mutant retinas both indicate that these DSCAM-mediated phenotypes can occur independently. In chimeric retinas, in which wild type and Dscam mutant cells are comingled, Dscam mutant cells entangle adjacent wild type cells of the same type, as if both cells were lacking Dscam, consistent with DSCAM-dependent cell spacing and neurite arborization being mediated through homophilic binding cell-to-cell. Deletion of Dscam in specific cell types causes cell-type-autonomous cell body spacing defects, indicating that DSCAM mediates arborization and spacing by acting within given cell types. We also examine the cell autonomy of DSCAM in laminar stratification and find that laminar disorganization can be caused in a non-cell autonomous fashion. Finally, we find Dscam dosage-dependent defects in developmental cell death and amacrine cell spacing, relevant to the increased cell death and other disorders observed in Down syndrome mouse models and human patients, in which Dscam is present in three copies.


Assuntos
Moléculas de Adesão Celular/metabolismo , Retina/citologia , Retina/embriologia , Alelos , Animais , Padronização Corporal/genética , Moléculas de Adesão Celular/deficiência , Contagem de Células , Morte Celular , Dendritos/metabolismo , Deleção de Genes , Marcação de Genes , Humanos , Camundongos , Mosaicismo , Fenótipo , Retina/metabolismo
13.
Proc Natl Acad Sci U S A ; 106(21): 8573-8, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19433787

RESUMO

Thalidomide is a potent teratogen that induces a range of birth defects, most commonly of the developing limbs. The mechanisms underpinning the teratogenic effects of thalidomide are unclear. Here we demonstrate that loss of immature blood vessels is the primary cause of thalidomide-induced teratogenesis and provide an explanation for its action at the cell biological level. Antiangiogenic but not antiinflammatory metabolites/analogues of thalidomide induce chick limb defects. Both in vitro and in vivo, outgrowth and remodeling of more mature blood vessels is blocked temporarily, whereas newly formed, rapidly developing, angiogenic vessels are lost. Such vessel loss occurs upstream of changes in limb morphogenesis and gene expression and, depending on the timing of drug application, results in either embryonic death or developmental defects. These results explain both the timing and relative tissue specificity of thalidomide embryopathy and have significant implications for its use as a therapeutic agent.


Assuntos
Deformidades Congênitas dos Membros/induzido quimicamente , Deformidades Congênitas dos Membros/embriologia , Neovascularização Fisiológica , Talidomida/análogos & derivados , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Citoesqueleto/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Deformidades Congênitas dos Membros/metabolismo , Deformidades Congênitas dos Membros/patologia , Pseudópodes/efeitos dos fármacos , Transdução de Sinais , Talidomida/farmacologia , Fatores de Tempo
15.
Dev Biol ; 335(2): 418-26, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19782674

RESUMO

The developing optic pathway has proven one of the most informative model systems for studying mechanisms of axon guidance. The first step in this process is the directed extension of retinal ganglion cell (RGC) axons within the optic fibre layer (OFL) of the retina towards their exit point from the eye, the optic disc. Previously, we have shown that the inhibitory guidance molecules, Slit1 and Slit2, regulate two distinct aspects of intraretinal axon guidance in a region-specific manner. Using knockout mice, we have found that both of these guidance activities are mediated via Robo2. Of the four vertebrate Robos, only Robo1 and Robo2 are expressed by RGCs. In mice lacking robo1 intraretinal axon guidance occurs normally. However, in mice lacking robo2 RGC axons make qualitatively and quantitatively identical intraretinal pathfinding errors to those reported previously in Slit mutants. This demonstrates clearly that, as in other regions of the optic pathway, Robo2 is the major receptor required for intraretinal axon guidance. Furthermore, the results suggest strongly that redundancy with other guidance signals rather than different receptor utilisation is the most likely explanation for the regional specificity of Slit function during intraretinal axon pathfinding.


Assuntos
Axônios , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Imunológicos/fisiologia , Células Ganglionares da Retina/citologia , Animais , Polaridade Celular , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/metabolismo
16.
Dev Biol ; 313(2): 648-58, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18054781

RESUMO

Cortical interneurons in rodents are generated in the ventral telencephalon and migrate tangentially into the cortex. This process requires the coordinated action of many intrinsic and extrinsic factors. Here we show that Robo1 and Robo2 receptor proteins are dynamically expressed throughout the period of corticogenesis and colocalize with interneuronal markers, suggesting that they play a role in the migration of these cells. Analysis of Robo mutants showed a marked increase in the number of interneurons in the cortices of Robo1(-/-), but not Robo2(-/-), animals throughout the period of corticogenesis and in adulthood; this excess number of interneurons was observed in all layers of the developing cortex. Using BrdU incorporation in dissociated cell cultures and phosphohistone-3 labeling in vivo, we demonstrated that the increased number of interneurons in Robo1(-/-) mice is, at least in part, due to increased proliferation. Interestingly, a similar increase in proliferation was observed in Slit1(-/-)/Slit2(-/-) mutant mice, suggesting that cell division is influenced by Slit-Robo signaling mechanisms. Morphometric analysis of migrating interneurons in Robo1(-/-), Robo2(-/-) and Slit1(-/-)/Slit2(-/-), but not in Slit1(-/-) mice, showed a differential increase in neuronal process length and branching suggesting that Slit-Robo signaling also plays an important role in the morphological differentiation of these neurons.


Assuntos
Córtex Cerebral/citologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Imunológicos/fisiologia , Transdução de Sinais , Animais , Biomarcadores , Calbindinas , Técnicas de Cultura de Células , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , DNA Complementar , Eletroporação , Embrião de Mamíferos , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Marcadores Genéticos , Vetores Genéticos , Biblioteca Genômica , Imuno-Histoquímica , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interneurônios/citologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Seleção Genética , Telencéfalo/citologia , Transfecção , Proteínas Roundabout
17.
Curr Biol ; 29(7): 1149-1160.e4, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905607

RESUMO

The existence of axons extending from one retina to the other has been reported during perinatal development in different vertebrates. However, it has been thought that these axons are either a labeling artifact or misprojections. Here, we show unequivocally that a small subset of retinal ganglion cells (RGCs) project to the opposite retina and that the guidance receptor Unc5c, expressed in the retinal region where the retinal-retinal (R-R) RGCs are located, is necessary and sufficient to guide axons to the opposite retina. In addition, Netrin1, an Unc5c ligand, is expressed in the ventral diencephalon in a pattern that is consistent with impeding the growth of Unc5c-positive retinal axons into the brain. We also have generated a mathematical model to explore the formation of retinotopic maps in the presence and absence of a functional connection between both eyes. This model predicts that an R-R connection is required for the bilateral coordination of axonal refinement in species where refinement depends upon spontaneous retinal waves. Consistent with this idea, the retinal expression of Unc5c correlates with the existence and size of an R-R projection in different species and with the extent of axonal refinement in visual targets. These findings demonstrate that active guidance drives the formation of the R-R projection and suggest an important role for these projections in visual mapping to ensure congruent bilateral refinement.


Assuntos
Galinhas/crescimento & desenvolvimento , Furões/crescimento & desenvolvimento , Receptores de Netrina/genética , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Camundongos/crescimento & desenvolvimento , Receptores de Netrina/metabolismo
18.
Neuron ; 39(6): 919-35, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12971893

RESUMO

In animals with binocular vision, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. Here, we show that ephrin-Bs in the chiasm region direct the divergence of retinal axons through the selective repulsion of a subset of RGCs that express EphB1. Ephrin-B2 is expressed at the mouse chiasm midline as the ipsilateral projection is generated and is selectively inhibitory to axons from ventrotemporal (VT) retina, where ipsilaterally projecting RGCs reside. Moreover, blocking ephrin-B2 function in vitro rescues the inhibitory effect of chiasm cells and eliminates the ipsilateral projection in the semiintact mouse visual system. A receptor for ephrin-B2, EphB1, is found exclusively in regions of retina that give rise to the ipsilateral projection. EphB1 null mice exhibit a dramatically reduced ipsilateral projection, suggesting that this receptor contributes to the formation of the ipsilateral retinal projection, most likely through its repulsive interaction with ephrin-B2.


Assuntos
Axônios/metabolismo , Efrina-B1/deficiência , Efrina-B2/biossíntese , Quiasma Óptico/metabolismo , Retina/metabolismo , Animais , Células Cultivadas , Efrina-B1/biossíntese , Efrina-B1/genética , Efrina-B2/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quiasma Óptico/embriologia , Gravidez , Retina/embriologia , Células Ganglionares da Retina/metabolismo , Xenopus
19.
Neuron ; 33(2): 219-32, 2002 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-11804570

RESUMO

During development, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. In Drosophila, the Slit protein regulates midline axon crossing through repulsion. To determine the role of Slit proteins in RGC axon guidance, we disrupted Slit1 and Slit2, two of three known mouse Slit genes. Mice defective in either gene alone exhibited few RGC axon guidance defects, but in double mutant mice a large additional chiasm developed anterior to the true chiasm, many retinal axons projected into the contralateral optic nerve, and some extended ectopically-dorsal and lateral to the chiasm. Our results indicate that Slit proteins repel retinal axons in vivo and cooperate to establish a corridor through which the axons are channeled, thereby helping define the site in the ventral diencephalon where the optic chiasm forms.


Assuntos
Axônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Retina/embriologia , Vias Visuais/embriologia , Animais , Diencéfalo/embriologia , Desenvolvimento Embrionário e Fetal/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Inibição Neural/fisiologia , Quiasma Óptico/embriologia , Área Pré-Óptica/embriologia , Células Ganglionares da Retina/fisiologia , Transmissão Sináptica/fisiologia
20.
Stem Cell Res ; 33: 185-198, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30439642

RESUMO

Limbal epithelial stem cells (LESCs) are believed to be responsible for corneal epithelial maintenance and repair after injury, but their activity has never been properly quantified in aging or wounded eyes. In this study, labelling with thymidine analogues, 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU) and 5-ethynyl-2'-deoxyuridine (EdU), was used to estimate cell-cycle time of the corneal and limbal epithelia in wild-type eyes, comparing aging (12 months) and young adult (8 week) mice. In C57BL/6 mice, cells cycled significantly faster in the central corneal epithelium of aging eyes (3.24 ±â€¯0.2 days) compared to 10 week old mice (4.97 ±â€¯0.5 days). Long-term labelling with IdU was used to detect slow-cycling stem cells, followed by CldU or EdU labelling to quantify the proliferative dynamics of LESCs during corneal wound healing. In unwounded eyes, 4.52 ±â€¯1.4% of LESCs were shown to enter S phase in a 24 h period and were estimated to divide every 2-3 weeks. Within 24 h of corneal injury this rose significantly to 32.8 ±â€¯10.0% of stem cells indicating a seven-fold increase in activation. In contrast, no comparable increase in LESC activation was observed in aging mice after wounding. In the 24-48 h period after wounding in young adults, LESC activation continued to increase (86.5 ±â€¯8.2% of label-retaining cells in wounded eye were in S-phase) but surprisingly, 46.0 ±â€¯9.4% of LESCs were observed to reenter S-phase in the contralateral unwounded eye. These data imply an unsuspected systemic effect of corneal wounding on LESC activation suggesting that injury to one eye elicits a regenerative response in both.


Assuntos
Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco/metabolismo , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa