RESUMO
The use of wearable devices has increased substantially in recent years. This, together with the rise of telemedicine, has led to the use of these types of devices in the healthcare field. In this work, we carried out a detailed study on the use of these devices (regarding the general trends); we analyzed the research works and devices marketed in the last 10 years. This analysis extracted relevant information on the general trend of use, as well as more specific aspects, such as the use of sensors, communication technologies, and diseases. A comparison was made between the commercial and research aspects linked to wearables in the healthcare field, and upcoming trends were analyzed.
Assuntos
Telemedicina , Dispositivos Eletrônicos Vestíveis , PrevisõesRESUMO
Monkeypox is a smallpox-like disease that was declared a global health emergency in July 2022. Because of this resemblance, it is not easy to distinguish a monkeypox rash from other similar diseases; however, due to the novelty of this disease, there are no widely used databases for this purpose with which to develop image-based classification algorithms. Therefore, three significant contributions are proposed in this work: first, the development of a publicly available dataset of monkeypox images; second, the development of a classification system based on convolutional neural networks in order to automatically distinguish monkeypox marks from those produced by other diseases; and, finally, the use of explainable AI tools for ensemble networks. For point 1, free images of monkeypox cases and other diseases have been searched in government databases and processed until we are left with only a section of the skin of the patients in each case. For point 2, various pre-trained models were used as classifiers and, in the second instance, combinations of these were used to form ensembles. And, for point 3, this is the first documented time that an explainable AI technique (like GradCAM) is applied to the results of ensemble networks. Among all the tests, the accuracy reaches 93% in the case of single pre-trained networks, and up to 98% using an ensemble of three networks (ResNet50, EfficientNetB0, and MobileNetV2). Comparing these results with previous work, a substantial improvement in classification accuracy is observed.
Assuntos
Mpox , Humanos , Mpox/diagnóstico por imagem , Pele/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Bases de Dados FactuaisRESUMO
Nowadays, the study of the gait by analyzing the distribution of plantar pressure is a well-established technique. The use of intelligent insoles allows real-time monitoring of the user. Thus, collecting and analyzing information is a more accurate process than consultations in so-called gait laboratories. Most of the previous published studies consider the composition and operation of these insoles based on resistive sensors. However, the use of capacitive sensors could provide better results, in terms of linear behavior under the pressure exerted. This behavior depends on the properties of the dielectric used. In this work, the design and implementation of an intelligent plantar insole composed of capacitive sensors is proposed. The dielectric used is a polydimethylsiloxane (PDMS)-based composition. The sensorized plantar insole developed achieves its purpose as a tool for collecting pressure in different areas of the sole of the foot. The fundamentals and details of the composition, manufacture, and implementation of the insole and the system used to collect data, as well as the data samples, are shown. Finally, a comparison of the behavior of both insoles, resistive and capacitive sensor-equipped, is made. The prototype presented lays the foundation for the development of a tool to support the diagnosis of gait abnormalities.
Assuntos
Marcha , Sapatos , Pressão , Pé , Dimetilpolisiloxanos , CaminhadaRESUMO
Intimate partner violence against women (IPVW) is a pressing social issue which poses a challenge in terms of prevention, legal action, and reporting the abuse once it has occurred. However, a significant number of female victims who file a complaint against their abuser and initiate legal proceedings, subsequently, withdraw charges for different reasons. Research in this field has been focusing on identifying the factors underlying women victims' decision to disengage from the legal process to enable intervention before this occurs. Previous studies have applied statistical models to use input variables and make a prediction of withdrawal. However, none have used machine learning models to predict disengagement from legal proceedings in IPVW cases. This could represent a more accurate way of detecting these events. This study applied machine learning (ML) techniques to predict the decision of IPVW victims to withdraw from prosecution. Three different ML algorithms were optimized and tested with the original dataset to assess the performance of ML models against non-linear input data. Once the best models had been obtained, explainable artificial intelligence (xAI) techniques were applied to search for the most informative input features and reduce the original dataset to the most important variables. Finally, these results were compared to those obtained in the previous work that used statistical techniques, and the set of most informative parameters was combined with the variables of the previous study, showing that ML-based models had a better predictive accuracy in all cases and that by adding one new variable to the previous work's predictive model, the accuracy to detect withdrawal improved by 7.5%.