Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Negl Trop Dis ; 16(6): e0010222, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767572

RESUMO

BACKGROUND: Tsetse flies (Glossina) transmit Trypanosoma brucei gambiense which causes Gambian human African trypanosomiasis (gHAT) in Central and West Africa. Several countries use Tiny Targets, comprising insecticide-treated panels of material which attract and kill tsetse, as part of their national programmes to eliminate gHAT. We studied how the scale and arrangement of target deployment affected the efficacy of control. METHODOLOGY AND PRINCIPAL FINDINGS: Between 2012 and 2016, Tiny Targets were deployed biannually along the larger rivers of Arua, Maracha, Koboko and Yumbe districts in North West Uganda with the aim of reducing the abundance of tsetse to interrupt transmission. The extent of these deployments increased from ~250 km2 in 2012 to ~1600 km2 in 2015. The impact of Tiny Targets on tsetse populations was assessed by analysing catches of tsetse from a network of monitoring traps; sub-samples of captured tsetse were dissected to estimate their age and infection status. In addition, the condition of 780 targets (~195/district) was assessed for up to six months after deployment. In each district, mean daily catches of tsetse (G. fuscipes fuscipes) from monitoring traps declined significantly by >80% following the deployment of targets. The reduction was apparent for several kilometres on adjacent lengths of the same river but not in other rivers a kilometre or so away. Expansion of the operational area did not always produce higher levels of suppression or detectable change in the age structure or infection rates of the population, perhaps due to the failure to treat the smaller streams and/or invasion from adjacent untreated areas. The median effective life of a Tiny Target was 61 (41.8-80.2, 95% CI) days. CONCLUSIONS: Scaling-up of tsetse control reduced the population of tsetse by >80% across the intervention area. Even better control might be achievable by tackling invasion of flies from infested areas within and outside the current intervention area. This might involve deploying more targets, especially along smaller rivers, and extending the effective life of Tiny Targets.


Assuntos
Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Gâmbia , Humanos , Controle de Insetos/métodos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Uganda/epidemiologia
2.
PLoS Negl Trop Dis ; 15(6): e0009463, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153040

RESUMO

BACKGROUND: Riverine tsetse (Glossina spp.) transmit Trypanosoma brucei gambiense which causes Gambian Human African Trypanosomiasis. Tiny Targets were developed for cost-effective riverine tsetse control, and comprise panels of insecticide-treated blue polyester fabric and black net that attract and kill tsetse. Versus typical blue polyesters, two putatively more attractive fabrics have been developed: Vestergaard ZeroFly blue, and violet. Violet was most attractive to savannah tsetse using large targets, but neither fabric has been tested for riverine tsetse using Tiny Targets. METHODS: We measured numbers of G. f. fuscipes attracted to electrified Tiny Targets in Kenya and Uganda. We compared violets, Vestergaard blues, and a typical blue polyester, using three replicated Latin squares experiments. We then employed Bayesian statistical analyses to generate expected catches for future target deployments incorporating uncertainty in model parameters, and prior knowledge from previous experiments. RESULTS: Expected catches for average future replicates of violet and Vestergaard blue targets were highly likely to exceed those for typical blue. Accounting for catch variability between replicates, it remained moderately probable (70-86% and 59-84%, respectively) that a given replicate of these targets would have a higher expected catch than typical blue on the same day at the same site. Meanwhile, expected catches for average violet replicates were, in general, moderately likely to exceed those for Vestergaard blue. However, the difference in medians was small, and accounting for catch variability, the probability that the expected catch for a violet replicate would exceed a Vestergaard blue equivalent was marginal (46-71%). CONCLUSION: Violet and Vestergaard ZeroFly blue are expected to outperform typical blue polyester in the Tiny Target configuration. Violet is unlikely to greatly outperform Vestergaard blue deployed in this way, but because violet is highly attractive to both riverine and savannah tsetse using different target designs, it may provide the more suitable general-purpose fabric.


Assuntos
Controle de Insetos/métodos , Insetos Vetores/fisiologia , Mosquiteiros Tratados com Inseticida , Moscas Tsé-Tsé/fisiologia , Animais , Teorema de Bayes , Controle de Insetos/instrumentação , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Quênia , Têxteis , Moscas Tsé-Tsé/efeitos dos fármacos , Uganda
3.
Parasit Vectors ; 14(1): 410, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407867

RESUMO

BACKGROUND: Riverine species of tsetse (Glossina) transmit Trypanosoma brucei gambiense, which causes Gambian human African trypanosomiasis (gHAT), a neglected tropical disease. Uganda aims to eliminate gHAT as a public health problem through detection and treatment of human cases and vector control. The latter is being achieved through the deployment of 'Tiny Targets', insecticide-impregnated panels of material which attract and kill tsetse. We analysed the spatial and temporal distribution of cases of gHAT in Uganda during the period 2010-2019 to assess whether Tiny Targets have had an impact on disease incidence. METHODS: To quantify the deployment of Tiny Targets, we mapped the rivers and their associated watersheds in the intervention area. We then categorised each of these on a scale of 0-3 according to whether Tiny Targets were absent (0), present only in neighbouring watersheds (1), present in the watersheds but not all neighbours (2), or present in the watershed and all neighbours (3). We overlaid all cases that were diagnosed between 2000 and 2020 and assessed whether the probability of finding cases in a watershed changed following the deployment of targets. We also estimated the number of cases averted through tsetse control. RESULTS: We found that following the deployment of Tiny Targets in a watershed, there were fewer cases of HAT, with a sampled error probability of 0.007. We estimate that during the intervention period 2012-2019 we should have expected 48 cases (95% confidence intervals = 40-57) compared to the 36 cases observed. The results are robust to a range of sensitivity analyses. CONCLUSIONS: Tiny Targets have reduced the incidence of gHAT by 25% in north-western Uganda.


Assuntos
Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Saúde Pública/normas , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/efeitos dos fármacos , Animais , Gâmbia , Humanos , Incidência , Insetos Vetores/parasitologia , Saúde Pública/métodos , Moscas Tsé-Tsé/parasitologia , Uganda/epidemiologia
4.
PLoS Negl Trop Dis ; 14(4): e0007737, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32255793

RESUMO

BACKGROUND: Large-scale control of sleeping sickness has led to a decline in the number of cases of Gambian human African trypanosomiasis (g-HAT) to <2000/year. However, achieving complete and lasting interruption of transmission may be difficult because animals may act as reservoir hosts for T. b. gambiense. Our study aims to update our understanding of T. b. gambiense in local vectors and domestic animals of N.W. Uganda. METHODS: We collected blood from 2896 cattle and 400 pigs and In addition, 6664 tsetse underwent microscopical examination for the presence of trypanosomes. Trypanosoma species were identified in tsetse from a subsample of 2184 using PCR. Primers specific for T. brucei s.l. and for T. brucei sub-species were used to screen cattle, pig and tsetse samples. RESULTS: In total, 39/2,088 (1.9%; 95% CI = 1.9-2.5) cattle, 25/400 (6.3%; 95% CI = 4.1-9.1) pigs and 40/2,184 (1.8%; 95% CI = 1.3-2.5) tsetse, were positive for T. brucei s.l.. Of these samples 24 cattle (61.5%), 15 pig (60%) and 25 tsetse (62.5%) samples had sufficient DNA to be screened using the T. brucei sub-species PCR. Further analysis found no cattle or pigs positive for T. b. gambiense, however, 17/40 of the tsetse samples produced a band suggestive of T. b. gambiense. When three of these 17 PCR products were sequenced the sequences were markedly different to T. b. gambiense, indicating that these flies were not infected with T. b. gambiense. CONCLUSION: The lack of T. b. gambiense positives in cattle, pigs and tsetse accords with the low prevalence of g-HAT in the human population. We found no evidence that livestock are acting as reservoir hosts. However, this study highlights the limitations of current methods of detecting and identifying T. b. gambiense which relies on a single copy-gene to discriminate between the different sub-species of T. brucei s.l.


Assuntos
Animais Domésticos/parasitologia , Reservatórios de Doenças/parasitologia , Topografia Médica , Trypanosoma brucei gambiense/isolamento & purificação , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/parasitologia , Animais , Sangue/parasitologia , Bovinos , Humanos , Microscopia , Reação em Cadeia da Polimerase , Prevalência , Suínos , Trypanosoma brucei gambiense/genética , Uganda/epidemiologia
5.
Parasit Vectors ; 11(1): 340, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884213

RESUMO

BACKGROUND: Vector control is emerging as an important component of global efforts to control Gambian sleeping sickness (human African trypanosomiasis, HAT). The deployment of insecticide-treated targets ("Tiny Targets") to attract and kill riverine tsetse, the vectors of Trypanosoma brucei gambiense, has been shown to be particularly cost-effective. As this method of vector control continues to be implemented across larger areas, knowledge of the abundance of tsetse to guide the deployment of "Tiny Targets" will be of increasing value. In this paper, we use a geostatistical modelling framework to produce maps of estimated tsetse abundance under two scenarios: (i) when accurate data on the local river network are available; and (ii) when river information is sparse. METHODS: Tsetse abundance data were obtained from a pre-intervention survey conducted in northern Uganda in 2010. River network data obtained from either digitised maps or derived from 30 m resolution digital elevation model (DEM) data as a proxy for ground truth data. Other environmental variables were derived from publicly-available resolution remotely sensed data (e.g. Landsat, 30 m resolution). Zero-inflated negative binomial geostatistical models were fitted to the abundance data using an integrated nested Laplace approximation approach, and maps of estimated tsetse abundance were produced. RESULTS: Restricting the analysis to traps located within 100 m of any river, positive associations were identified between the length of river and the minimum soil/vegetation moisture content of the surrounding area and daily fly catches, whereas negative associations were identified with elevation and distance to the river. The resulting models could accurately distinguish between traps with high and low fly catches (e.g. < 5 or > 5 flies/day), with a ROC-AUC (receiver-operating characteristic - area under the curve) greater than 0.9. Whilst the precise course of the river was not well approximated using the DEM data, the models fitted using DEM-derived river data performed similarly to those that incorporated the more accurate local river information. CONCLUSIONS: These models can now be used to assist in the design, implementation and monitoring of tsetse control operations in northern Uganda and further can be used as a framework by which to undertake similar studies in other areas where Glossina fuscipes fuscipes spreads Gambian sleeping sickness.


Assuntos
Insetos Vetores/parasitologia , Trypanosoma brucei gambiense/fisiologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/fisiologia , Distribuição Animal , Animais , Ecossistema , Controle de Insetos , Insetos Vetores/fisiologia , Modelos Estatísticos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Uganda/epidemiologia
6.
PLoS Negl Trop Dis ; 10(6): e0004745, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27253367

RESUMO

The traditional role of African elders and their connection with the community make them important stakeholders in community-based disease control programmes. We explored elders' memories related to interventions against sleeping sickness to assess whether or not past interventions created any trauma which might hamper future control operations. Using a qualitative research framework, we conducted and analysed twenty-four in-depth interviews with Lugbara elders from north-western Uganda. Participants were selected from the villages inside and outside known historical sleeping sickness foci. Elders' memories ranged from examinations of lymph nodes conducted in colonial times to more recent active screening and treatment campaigns. Some negative memories dating from the 1990s were associated with diagnostic procedures, treatment duration and treatment side effects, and were combined with memories of negative impacts related to sleeping sickness epidemics particularly in HAT foci. More positive observations from the recent treatment campaigns were reported, especially improvements in treatment. Sleeping sickness interventions in our research area did not create any permanent traumatic memories, but memories remained flexible and open to change. This study however identified that details related to medical procedures can remain captured in a community's collective memory for decades. We recommend more emphasis on communication between disease control programme planners and communities using detailed and transparent information distribution, which is not one directional but rather a dialogue between both parties.


Assuntos
Controle de Doenças Transmissíveis/história , Controle de Doenças Transmissíveis/métodos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Antiparasitários/efeitos adversos , Antiparasitários/uso terapêutico , Participação da Comunidade , Surtos de Doenças , Epidemias , Feminino , Conhecimentos, Atitudes e Prática em Saúde , História do Século XX , Humanos , Masculino , Memória , Aceitação pelo Paciente de Cuidados de Saúde , População Rural , Uganda/epidemiologia
7.
Onderstepoort J Vet Res ; 83(1): a1172, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27380653

RESUMO

An unpredicted outbreak of African animal trypanosomosis or nagana in 1990 in north-eastern KwaZulu-Natal necessitated an emergency control programme, utilising the extensive cattledipping system in the area, as well as a reassessment of the tsetse and trypanosomosis problem in the province. Since 1990, sporadic blood sampling of cattle at the dip tanks in the naganainfested areas were undertaken to identify trypanosome species involved and to determine the infection prevalence in cattle. The distribution and species composition of the tsetse populations in the area were also investigated. From November 2005 to November 2007 selected dip tanks were surveyed for trypanosome infection prevalence. During April 2005 to August 2009 the distribution and abundance of tsetse populations were assessed with odour-baited H traps. The tsetse and trypanosome distribution maps were updated and potential correlations between tsetse apparent densities (ADs) and the prevalence of trypanosomosis were assessed. Glossina brevipalpis Newstead and Glossina austeni Newstead were recorded in locations where they have not previously been collected. No significant correlation between tsetse relative abundance and nagana prevalence was found, which indicated complex interactions between tsetse fly presence and disease prevalence. This was epitomised by data that indicated that despite large differences in the ADs of G. austeni and G. brevipalpis, trypanosome infection prevalence was similar in all three districts in the area. This study clearly indicated that both tsetse species play significant roles in trypanosome transmission and that it will be essential that any control strategy, which aims at sustainable management of the disease, should target both species.


Assuntos
Distribuição Animal , Doenças dos Bovinos/epidemiologia , Insetos Vetores/fisiologia , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/fisiologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Prevalência , África do Sul/epidemiologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia
8.
PLoS Negl Trop Dis ; 9(8): e0003822, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267814

RESUMO

BACKGROUND: Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. METHODS AND FINDINGS: The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km2). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. INTERPRETATION: The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised.


Assuntos
Controle de Insetos , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/fisiologia , Animais , Humanos , Controle de Insetos/economia , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Quênia/epidemiologia , Trypanosoma brucei gambiense/fisiologia , Tripanossomíase Africana/economia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Uganda/epidemiologia
9.
PLoS Negl Trop Dis ; 9(3): e0003624, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25811956

RESUMO

INTRODUCTION: To evaluate the relative effectiveness of tsetse control methods, their costs need to be analysed alongside their impact on tsetse populations. Very little has been published on the costs of methods specifically targeting human African trypanosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: In northern Uganda, a 250 km2 field trial was undertaken using small (0.5 X 0.25 m) insecticide-treated targets ("tiny targets"). Detailed cost recording accompanied every phase of the work. Costs were calculated for this operation as if managed by the Ugandan vector control services: removing purely research components of the work and applying local salaries. This calculation assumed that all resources are fully used, with no spare capacity. The full cost of the operation was assessed at USD 85.4 per km2, of which USD 55.7 or 65.2% were field costs, made up of three component activities (target deployment: 34.5%, trap monitoring: 10.6% and target maintenance: 20.1%). The remaining USD 29.7 or 34.8% of the costs were for preliminary studies and administration (tsetse surveys: 6.0%, sensitisation of local populations: 18.6% and office support: 10.2%). Targets accounted for only 12.9% of the total cost, other important cost components were labour (24.1%) and transport (34.6%). DISCUSSION: Comparison with the updated cost of historical HAT vector control projects and recent estimates indicates that this work represents a major reduction in cost levels. This is attributed not just to the low unit cost of tiny targets but also to the organisation of delivery, using local labour with bicycles or motorcycles. Sensitivity analyses were undertaken, investigating key prices and assumptions. It is believed that these costs are generalizable to other HAT foci, although in more remote areas, with denser vegetation and fewer people, costs would increase, as would be the case for other tsetse control techniques.


Assuntos
Controle de Insetos/economia , Inseticidas/farmacologia , Tripanossomíase Africana/prevenção & controle , Animais , Humanos , Insetos Vetores/efeitos dos fármacos , Inseticidas/economia , Moscas Tsé-Tsé/efeitos dos fármacos , Uganda
10.
PLoS Negl Trop Dis ; 14(11): e0008738, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180776
11.
PLoS Negl Trop Dis ; 8(6): e2901, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24921243

RESUMO

BACKGROUND: Male and female tsetse flies feed exclusively on vertebrate blood. While doing so they can transmit the diseases of sleeping sickness in humans and nagana in domestic stock. Knowledge of the host-orientated behavior of tsetse is important in designing bait methods of sampling and controlling the flies, and in understanding the epidemiology of the diseases. For this we must explain several puzzling distinctions in the behavior of the different sexes and species of tsetse. For example, why is it that the species occupying savannahs, unlike those of riverine habitats, appear strongly responsive to odor, rely mainly on large hosts, are repelled by humans, and are often shy of alighting on baits? METHODOLOGY/PRINCIPAL FINDINGS: A deterministic model that simulated fly mobility and host-finding success suggested that the behavioral distinctions between riverine, savannah and forest tsetse are due largely to habitat size and shape, and the extent to which dense bushes limit occupiable space within the habitats. These factors seemed effective primarily because they affect the daily displacement of tsetse, reducing it by up to ∼70%. Sex differences in behavior are explicable by females being larger and more mobile than males. CONCLUSION/SIGNIFICANCE: Habitat geometry and fly size provide a framework that can unify much of the behavior of all sexes and species of tsetse everywhere. The general expectation is that relatively immobile insects in restricted habitats tend to be less responsive to host odors and more catholic in their diet. This has profound implications for the optimization of bait technology for tsetse, mosquitoes, black flies and tabanids, and for the epidemiology of the diseases they transmit.


Assuntos
Ecossistema , Moscas Tsé-Tsé/fisiologia , Animais , Tamanho Corporal , Simulação por Computador , Comportamento Alimentar , Feminino , Locomoção , Masculino
12.
PLoS Negl Trop Dis ; 7(12): e2579, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349593

RESUMO

BACKGROUND: There is renewed vigour in efforts to eliminate neglected tropical diseases including sleeping sickness (human African trypanosomiasis or HAT), including attempts to develop more cost-effective methods of tsetse control. In the West Nile region of Uganda, newly designed insecticide-treated targets are being deployed over an area of ∼500 km(2). The operational area covers villages where tsetse control has not been conducted previously. The effectiveness of the targets will depend, in part, on their acceptance by the local community. METHODOLOGY/PRINCIPAL FINDINGS: We assessed knowledge, perceptions and acceptance of tsetse baits (traps, targets) in villages where they had or had not been used previously. We conducted sixteen focus group discussions with male and female participants in eight villages across Arua District. Discussions were audio recorded, translated and transcribed. We used thematic analysis to compare the views of both groups and identify salient themes. CONCLUSIONS/SIGNIFICANCE: Despite the villages being less than 10 km apart, community members perceived deployed baits very differently. Villagers who had never seen traps before expressed fear, anxiety and panic when they first encountered them. This was related to associations with witchcraft and "ghosts from the river" which are traditionally linked with physical or mental illness, death and misfortune. By contrast, villagers living in areas where traps had been used previously had positive attitudes towards them and were fully aware of their purpose and benefits. The latter group reported that they had similar negative perceptions when tsetse control interventions first started a decade ago. Our results suggest that despite their proximity, acceptance of traps varies markedly between villages and this is related to the duration of experience with tsetse control programs. The success of community-based interventions against tsetse will therefore depend on early engagements with communities and carefully designed sensitization campaigns that reach all communities, especially those living in areas new to such interventions.


Assuntos
Vetores de Doenças , Controle de Insetos/métodos , Aceitação pelo Paciente de Cuidados de Saúde , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/crescimento & desenvolvimento , Adulto , Animais , Feminino , Grupos Focais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Masculino , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , População Rural , Uganda , Adulto Jovem
13.
PLoS Negl Trop Dis ; 5(9): e1336, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21949897

RESUMO

Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets.


Assuntos
Controle de Insetos/métodos , Inseticidas/administração & dosagem , Desenvolvimento Vegetal , Moscas Tsé-Tsé/fisiologia , Animais , Comportamento Animal , Vetores de Doenças , Feminino , Controle de Insetos/instrumentação , Quênia , Masculino
14.
PLoS Negl Trop Dis ; 5(8): e1257, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21829743

RESUMO

Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or insecticide-treated targets. The efficiency of biconical traps (the standard control device), 1×1 m black targets and small 25×25 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina tachinoides and G. palpalis gambiensis (Burkina Faso), G. fuscipes quanzensis (Democratic Republic of Congo), G. f. martinii (Tanzania) and G. f. fuscipes (Kenya). The killing effectiveness (measured as the catch per m(2) of cloth) for small targets plus flanking nets is 5.5-15X greater than for 1 m(2) targets and 8.6-37.5X greater than for biconical traps. This has important implications for the costs of control of the Riverine group of tsetse vectors of sleeping sickness.


Assuntos
Controle de Insetos/economia , Controle de Insetos/métodos , Insetos Vetores/fisiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/fisiologia , Animais , Análise Custo-Benefício , República Democrática do Congo , Feminino , Humanos , Controle de Insetos/instrumentação , Insetos Vetores/parasitologia , Quênia , Masculino , Tanzânia , Trypanosoma brucei gambiense/isolamento & purificação , Moscas Tsé-Tsé/parasitologia
15.
PLoS Negl Trop Dis ; 5(8): e1226, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21829734

RESUMO

Palpalis-group tsetse, particularly the subspecies of Glossina palpalis and G. fuscipes, are the most important transmitters of human African trypanomiasis (HAT), transmitting >95% of cases. Traps and insecticide-treated targets are used to control tsetse but more cost-effective baits might be developed through a better understanding of the fly's host-seeking behaviour. Electrocuting grids were used to assess the numbers of G. palpalis palpalis and G. fuscipes quanzensis attracted to and landing on square or oblong targets of black cloth varying in size from 0.01 m(2) to 1.0 m(2). For both species, increasing the size of a square target from 0.01 m(2) (dimensions=0.1 × 0.1 m) to 1.0 m(2) (1.0 × 1.0 m) increased the catch ~4x however the numbers of tsetse killed per unit area of target declined with target size suggesting that the most cost efficient targets are not the largest. For G. f. quanzensis, horizontal oblongs, (1 m wide × 0.5 m high) caught ~1.8x more tsetse than vertical ones (0.5 m wide × 1.0 m high) but the opposite applied for G. p. palpalis. Shape preference was consistent over the range of target sizes. For G. p. palpalis square targets caught as many tsetse as the oblong; while the evidence is less strong the same appears to apply to G. f. quanzensis. The results suggest that targets used to control G. p. palpalis and G. f. quanzensis should be square, and that the most cost-effective designs, as judged by the numbers of tsetse caught per area of target, are likely to be in the region of 0.25 × 0.25 m(2). The preference of G. p. palpalis for vertical oblongs is unique amongst tsetse species, and it is suggested that this response might be related to its anthropophagic behaviour and hence importance as a vector of HAT.


Assuntos
Comportamento Animal/fisiologia , Controle de Insetos/métodos , Insetos Vetores/fisiologia , Moscas Tsé-Tsé/fisiologia , Animais , Interações Hospedeiro-Parasita , Humanos , Inseticidas , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia
16.
PLoS Negl Trop Dis ; 5(9): e1332, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21949896

RESUMO

BACKGROUND: Tsetse flies of the Palpalis group are the main vectors of sleeping sickness in Africa. Insecticide impregnated targets are one of the most effective tools for control. However, the cost of these devices still represents a constraint to their wider use. The objective was therefore to improve the cost effectiveness of currently used devices. METHODOLOGY/PRINCIPAL FINDINGS: Experiments were performed on three tsetse species, namely Glossina palpalis gambiensis and G. tachinoides in Burkina Faso and G. p. palpalis in Côte d'Ivoire. The 1 × 1 m(2) black blue black target commonly used in W. Africa was used as the standard, and effects of changes in target size, shape, and the use of netting instead of black cloth were measured. Regarding overall target shape, we observed that horizontal targets (i.e. wider than they were high) killed 1.6-5x more G. p. gambiensis and G. tachinoides than vertical ones (i.e. higher than they were wide) (P < 0.001). For the three tsetse species including G. p. palpalis, catches were highly correlated with the size of the target. However, beyond the size of 0.75 m, there was no increase in catches. Replacing the black cloth of the target by netting was the most cost efficient for all three species. CONCLUSION/SIGNIFICANCE: Reducing the size of the current 1*1 m black-blue-black target to horizontal designs of around 50 cm and replacing black cloth by netting will improve cost effectiveness six-fold for both G. p. gambiensis and G. tachinoides. Studying the visual responses of tsetse to different designs of target has allowed us to design more cost-effective devices for the effective control of sleeping sickness and animal trypanosomiasis in Africa.


Assuntos
Comportamento Animal , Controle de Insetos/economia , Controle de Insetos/instrumentação , Inseticidas/administração & dosagem , Inseticidas/economia , Moscas Tsé-Tsé/efeitos dos fármacos , Moscas Tsé-Tsé/crescimento & desenvolvimento , Animais , Controle Comportamental , Burkina Faso , Análise Custo-Benefício , Côte d'Ivoire , Feminino , Controle de Insetos/métodos , Masculino
17.
PLoS Negl Trop Dis ; 3(5): e435, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19434232

RESUMO

We are attempting to develop cost-effective control methods for the important vector of sleeping sickness, Glossina fuscipes spp. Responses of the tsetse flies Glossina fuscipes fuscipes (in Kenya) and G. f. quanzensis (in Democratic Republic of Congo) to natural host odours are reported. Arrangements of electric nets were used to assess the effect of cattle-, human- and pig-odour on (1) the numbers of tsetse attracted to the odour source and (2) the proportion of flies that landed on a black target (1x1 m). In addition responses to monitor lizard (Varanus niloticus) were assessed in Kenya. The effects of all four odours on the proportion of tsetse that entered a biconical trap were also determined. Sources of natural host odour were produced by placing live hosts in a tent or metal hut (volumes approximately 16 m(3)) from which the air was exhausted at approximately 2000 L/min. Odours from cattle, pigs and humans had no significant effect on attraction of G. f. fuscipes but lizard odour doubled the catch (P<0.05). Similarly, mammalian odours had no significant effect on landing or trap entry whereas lizard odour increased these responses significantly: landing responses increased significantly by 22% for males and 10% for females; the increase in trap efficiency was relatively slight (5-10%) and not always significant. For G. f. quanzensis, only pig odour had a consistent effect, doubling the catch of females attracted to the source and increasing the landing response for females by approximately 15%. Dispensing CO(2) at doses equivalent to natural hosts suggested that the response of G. f. fuscipes to lizard odour was not due to CO(2). For G. f. quanzensis, pig odour and CO(2) attracted similar numbers of tsetse, but CO(2) had no material effect on the landing response. The results suggest that identifying kairomones present in lizard odour for G. f. fuscipes and pig odour for G. f. quanzensis may improve the performance of targets for controlling these species.


Assuntos
Controle de Insetos/métodos , Odorantes , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/parasitologia , Animais , Bovinos , Feminino , Humanos , Insetos Vetores/parasitologia , Masculino , Suínos , Tripanossomíase Africana/parasitologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa