Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 14(3): 1065-90, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26632484

RESUMO

The palladium-catalyzed coupling of an enolate with an ortho-functionalized aryl halide (an α-arylation) furnishes a protected 1,5-dicarbonyl moiety that can be cyclized to an isoquinoline with a source of ammonia. This fully regioselective synthetic route tolerates a wide range of substituents, including those that give rise to the traditionally difficult to access electron-deficient isoquinoline skeletons. These two synthetic operations can be combined to give a three-component, one-pot isoquinoline synthesis. Alternatively, cyclization of the intermediates with hydroxylamine hydrochloride engenders direct access to isoquinoline N-oxides; and cyclization with methylamine, gives isoquinolinium salts. Significant diversity is available in the substituents at the C4 position in four-component, one-pot couplings, by either trapping the in situ intermediate after α-arylation with carbon or heteroatom-based electrophiles, or by performing an α,α-heterodiarylation to install aryl groups at this position. The α-arylation of nitrile and ester enolates gives access to 3-amino and 3-hydroxyisoquinolines and the α-arylation of tert-butyl cyanoacetate followed by electrophile trapping, decarboxylation and cyclization, C4-functionalized 3-aminoisoquinolines. An oxime directing group can be used to direct a C-H functionalization/bromination, which allows monofunctionalized rather than difunctionalized aryl precursors to be brought through this synthetic route.

2.
Mater Sci Eng C Mater Biol Appl ; 33(5): 2766-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623094

RESUMO

We describe the construction of an electronic nose, comprising four chemiresistive sensors formed by the deposition of thin conductive polymer films onto interdigitated electrodes, attached to a personal computer via a data acquisition board. This e-nose was used to detect biodeterioration of oranges colonized by Penicillium digitatum. Significant responses were obtained after only 24 h of incubation i.e. at an early stage of biodeterioration, enabling remedial measures to be taken in storage facilities and efficiently distinguishing between good and poor quality fruits. The instrument has a very low analysis time of 40 s.


Assuntos
Eletrônica , Frutas/microbiologia , Penicillium/isolamento & purificação , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa