Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 34(7): 1522-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24855057

RESUMO

OBJECTIVE: Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS: Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS: Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.


Assuntos
Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ1/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Potássio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Canais de Potássio KCNQ/química , Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Microdomínios da Membrana/metabolismo , Potenciais da Membrana , Músculo Liso Vascular/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Estrutura Quaternária de Proteína , Ratos , Transfecção , Xenopus
2.
Cell Physiol Biochem ; 24(5-6): 325-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19910673

RESUMO

Kv7 (KCNQ) proteins form a family of voltage-gated potassium channels that is comprised of five members, Kv7.1-Kv7.5. While Kv7.1 is crucial in the heart, the Kv7.2, Kv7.3, Kv7.4 and Kv7.5 channels contribute to the M-current in the nervous system. In addition to the brain, Kv7.5 is expressed in skeletal and smooth muscle, where its physiological role is currently under evaluation. Kv7 associations with KCNE accessory subunits (KCNE1-5) enhance channel diversity and their interaction provides mechanisms to respond to a variety of stimuli. KCNE peptides control the surface expression, voltage-dependence, kinetics of gating, unitary conductance, ion selectivity and pharmacology of several channels. KCNE subunits have been primarily studied in the heart; however, their activity in the brain and in many other tissues is being increasingly recognized. Here, we found that Kv7.5 and KCNE subunits are present in myoblasts. Therefore, oligomeric associations may underlie some Kv7.5 functional diversity in skeletal muscle. An extensive study in Xenopus oocytes and HEK-293 cells demonstrates that KCNE1 and KCNE3, but none of the other KCNE subunits, affect Kv7.5 currents. While KCNE1 slows activation and suppresses inward rectification, KCNE3 drastically inhibits Kv7.5 currents. In addition, KCNE1 increases Kv7.5 currents in HEK cells. Changes in gating and amplitude indicate functional interactions. Our results have physiological relevance since Kv7.5 is abundant in skeletal and smooth muscle and its association with KCNE peptides may fine-tune cellular responses.


Assuntos
Canais de Potássio KCNQ/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Linhagem Celular , Fenômenos Eletrofisiológicos , Humanos , Canais de Potássio KCNQ/genética , Músculo Esquelético/metabolismo , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Fase S , Xenopus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa