Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Med ; 24(1): 74, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598008

RESUMO

Despite recent advances, biliary tract cancer (BTC) remains one of the most lethal tumor worldwide due to late diagnosis, limited therapeutic strategies and resistance to conventional therapies. In recent years, high-throughput technologies have enabled extensive genome, and transcriptome sequencing unveiling, among others, the regulatory potential of microRNAs (miRNAs). Compelling evidence shown that miRNA are attractive therapeutic targets and promising candidates as biomarkers for various therapy-resistant tumors. The analysis of miRNA profile successfully identified miR-181c and -181d as significantly downregulated in BTC patients. Low miR-181c and -181d expression levels were correlated with worse prognosis and poor treatment efficacy. In fact, progression-free survival analysis indicated poor survival rates in miR-181c and -181d low expressing patients. The expression profile of miR-181c and -181d in BTC cell lines revealed that both miRNAs were dysregulated. Functional in vitro experiments in BTC cell lines showed that overexpression of miR-181c and -181d affected cell viability and increased sensitivity to chemotherapy compared to controls. In addition, by using bioinformatic tools we showed that the miR-181c/d functional role is determined by binding to their target SIRT1 (Sirtuin 1). Moreover, BTC patients expressing high levels of miR-181 and low SIRT1 shown an improved survival and treatment response. An integrative network analysis demonstrated that, miR-181/SIRT1 circuit had a regulatory effect on several important metabolic tumor-related processes. Our study demonstrated that miR-181c and -181d act as tumor suppressor miRNA in BTC, suggesting the potential use as therapeutic strategy in resistant cancers and as predictive biomarker in the precision medicine of BTC.


Assuntos
Neoplasias do Sistema Biliar , MicroRNAs , Humanos , Neoplasias do Sistema Biliar/tratamento farmacológico , Neoplasias do Sistema Biliar/genética , Linhagem Celular , Sobrevivência Celular , MicroRNAs/genética , Sirtuína 1/genética
2.
Virus Res ; 338: 199236, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797746

RESUMO

EBV is a gammaherpesvirus strongly associated to human cancer. The virus has been shown to play a role also in inflammatory diseases, including IBD, in the context of which colon cancer more frequently arise. In this study, we show for the first time that EBV infects primary colonic epithelial cells (HCoEpC), promotes pro-inflammatory cytokine secretion and activates molecular pathways bridging inflammation and cancer, such as ERK1/2. These effects, occurring in the course of the lytic phase of the viral life cycle, led to DDR and autophagy dysregulation. Such cellular responses, playing a key role in the maintenance of proteostasis and genome integrity, are essential to prevent carcinogenesis. Interestingly, we found that the use of the demethylating agent 5-AZA could counteract most of the effects induced by EBV infection in HCoEpC, suggesting that DNA hyper-methylation may strongly contribute to viral-driven inflammation and colon cancer predisposition.


Assuntos
Neoplasias do Colo , Infecções por Vírus Epstein-Barr , Doenças Inflamatórias Intestinais , Humanos , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Células Epiteliais , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/genética , Autofagia , Carcinogênese , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo
3.
Pharmaceutics ; 14(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336037

RESUMO

Understanding the effects induced by carcinogens on primary colonic epithelial cells and how to counteract them might help to prevent colon cancer, which is one of the most frequent and aggressive cancers. In this study, we exposed primary human colonic epithelial cells (HCoEpC) to Benzo[a]pyrene (B[a]P) and found that it led to an increased production of pro-inflammatory cytokines and activated ERK1/2 and mTOR. These pathways are known to be involved in inflammatory bowel disease (IBD), which represents a colon cancer risk factor. Moreover, B[a]P reduced autophagy and mitophagy, processes whose dysregulation has been clearly demonstrated to predispose to cancer either by in vitro or in vivo studies. Interestingly, all the effects induced by B[a]P could be counteracted by 3,4-Dihydroxyphenylethanol (DPE or Hydroxytyrosol, H), the most powerful anti-inflammatory and antioxidant compound contained in olive oil. This study sheds light on the mechanisms that could be involved in colon carcinogenesis induced by a chemical carcinogen and identifies a safe natural product that may help to prevent them.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa