Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioconjug Chem ; 34(10): 1811-1821, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37758302

RESUMO

Currently approved pharmacotherapies for opioid use disorders (OUDs) and overdose reversal agents are insufficient to slow the spread of OUDs due to the proliferation of fentanyl. This is evident in the 31% rise in drug overdose deaths from 2019 to 2022, with rates increasing from 21.6 to 28.3 overdoses per 100,000 deaths. Vaccines are a potential alternative or adjunct therapy for the treatment of several substance use disorders (nicotine, cocaine) but have shown limited clinical success due to suboptimal antibody titers. In this study, we demonstrate that coconjugation of a Toll-like receptor 7/8 (TLR7/8) agonist (UM-3006) alongside a fentanyl-based hapten (F1) on the surface of the carrier protein cross-reactive material 197 (CRM) significantly increased generation of high-affinity fentanyl-specific antibodies. This demonstrated enhanced protection against fentanyl challenges relative to an unconjugated (admix) adjuvant control in mice. Inclusion of aluminum hydroxide (alum) adjuvant further increased titers and enhanced protection, as determined by analysis of fentanyl concentration in serum and brain tissue. Collectively, our findings present a promising approach to enhance the efficacy of antiopioid vaccines, underscoring the need for extensive exploration of TLR7/8 agonist conjugates as a compelling strategy to combat opioid use disorders.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Vacinas , Animais , Camundongos , Receptor 7 Toll-Like/agonistas , Fentanila/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Antígenos/uso terapêutico , Haptenos , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Analgésicos Opioides/uso terapêutico
2.
Tetrahedron ; 1322023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36874612

RESUMO

The identification of Mincle as the C-type lectin receptor on innate immune cells responsible for binding TDM and the realization that this receptor could be key to productive vaccines for mycobacterial infection has raised interest in the development of synthetic Mincle ligands as novel adjuvants. We recently reported on the synthesis and evaluation of Brartemicin analog UM-1024 that demonstrated Mincle agonist activity, exhibiting potent Th1/Th17 adjuvant activity that was greater than that of trehalose dibehenate (TDB). Our pursuit to understand Mincle/ligand relationships and improve the pharmacologic properties of the ligands has expanded and continues to reveal new and exciting structure activity relationships. Herein we report the synthesis of novel bi-aryl trehalose derivatives in good to excellent yields. These compounds were evaluated for their ability to engage the human Mincle receptor and tested for the induction of cytokines from human peripheral blood mononuclear cells. A preliminary structure-activity relationship (SAR) of these novel bi-aryl derivatives revealed that bi-aryl trehalose ligand 3D showed relatively high potency in cytokine production in comparison to trehalose glycolipid adjuvant TDB and the natural ligand TDM and induced dose-dependent, Mincle selective stimulation in hMincle HEK reporter cells. Also, through computational studies, we provide an insight into the potential mode of binding of 6,6'-Biaryl trehalose compounds on human Mincle receptor.

3.
Bioorg Med Chem Lett ; 30(6): 126984, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001135

RESUMO

Toll-like receptors 7 and 8 (TLR7/8) agonists are potent immunostimulants that are attracting considerable interest as vaccine adjuvants. We recently reported the synthesis of a new series of 2-O-butyl-8-oxoadenines substituted at the 9-position with various linkers and N-heterocycles, and showed that TLR7/8 selectivity, potency and cytokine induction could be modulated by varying the alkyl linker length and the N-heterocyclic ring. In the present study, we further optimized the oxoadenine scaffold by investigating the effect of different substituents at the 2-position of the oxoadenine on TLR7/8 potency/selectivity, cytokine induction and DC maturation in human PBMCs. The results show that introducing a 1-(S)-methylbutoxy group at the 2-position of the oxoadenine significantly increased potency for TLR7/8 activity, cytokine induction and DC maturation.


Assuntos
Adenina/análogos & derivados , Adjuvantes Imunológicos/química , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adenina/química , Adenina/imunologia , Adjuvantes Imunológicos/metabolismo , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Quinolinas/química , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 28(14): 115564, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32616186

RESUMO

6,6'-Aryl trehalose derivatives have been synthesized with a view towards identifying novel Th-17-inducing vaccine adjuvants based on the high affinity Mincle ligand Brartemicin. The initial structure-activity relationships of these novel trehalose-based compounds were investigated. All compounds have been evaluated for their ability to engage the Mincle receptor and induce a potential pro-Th17 cytokine profile from human peripheral blood mononuclear cells based on IL-6 production in human peripheral blood mononuclear cells. The preliminary biological characterization of the designed analogs presented in this paper should aid in the future design and testing of more affine ligands that may foster the discovery of novel adjuvants with improved pharmacological properties.


Assuntos
Lectinas Tipo C/metabolismo , Receptores Imunológicos/metabolismo , Trealose/farmacologia , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade , Trealose/análogos & derivados , Trealose/química
5.
J Immunol ; 200(2): 788-799, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246954

RESUMO

Ligation of Dectin-1 by fungal glucans elicits a Th17 response that is necessary for clearing many fungal pathogens. Laminarin is a (1→3, 1→6)-ß-glucan that is widely reported to be a Dectin-1 antagonist, however, there are reports that laminarin is also a Dectin-1 agonist. To address this controversy, we assessed the physical properties, structure, purity, Dectin-1 binding, and biological activity of five different laminarin preparations from three different commercial sources. The proton nuclear magnetic resonance analysis indicated that all of the preparations contained laminarin although their molecular mass varied considerably (4400-34,400 Da). Two of the laminarins contained substantial quantities of very low m.w. compounds, some of which were not laminarin. These low m.w. moieties could be significantly reduced by extensive dialysis. All of the laminarin preparations were bound by recombinant human Dectin-1 and mouse Dectin-1, but the affinity varied considerably, and binding affinity did not correlate with Dectin-1 agonism, antagonism, or potency. In both human and mouse cells, two laminarins were Dectin-1 antagonists and two were Dectin-1 agonists. The remaining laminarin was a Dectin-1 antagonist, but when the low m.w. moieties were removed, it became an agonist. We were able to identify a laminarin that is a Dectin-1 agonist and a laminarin that is Dectin-1 antagonist, both of which are relatively pure preparations. These laminarins may be useful in elucidating the structure and activity relationships of glucan/Dectin-1 interactions. Our data demonstrate that laminarin can be either a Dectin-1 antagonist or agonist, depending on the physicochemical properties, purity, and structure of the laminarin preparation employed.


Assuntos
Produtos Biológicos/farmacologia , Glucanos/farmacologia , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Animais , Produtos Biológicos/química , Linhagem Celular , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Glucanos/química , Humanos , Fatores Imunológicos/química , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Polímeros/química , Polímeros/farmacologia , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
PLoS Pathog ; 10(1): e1003875, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465206

RESUMO

Influenza disease is a global health issue that causes significant morbidity and mortality through seasonal epidemics. Currently, inactivated influenza virus vaccines given intramuscularly or live attenuated influenza virus vaccines administered intranasally are the only approved options for vaccination against influenza virus in humans. We evaluated the efficacy of a synthetic toll-like receptor 4 agonist CRX-601 as an adjuvant for enhancing vaccine-induced protection against influenza infection. Intranasal administration of CRX-601 adjuvant combined with detergent split-influenza antigen (A/Uruguay/716/2007 (H3N2)) generated strong local and systemic immunity against co-administered influenza antigens while exhibiting high efficacy against two heterotypic influenza challenges. Intranasal vaccination with CRX-601 adjuvanted vaccines promoted antigen-specific IgG and IgA antibody responses and the generation of polyfunctional antigen-specific Th17 cells (CD4(+)IL-17A(+)TNFα(+)). Following challenge with influenza virus, vaccinated mice transiently exhibited increased weight loss and morbidity during early stages of disease but eventually controlled infection. This disease exacerbation following influenza infection in vaccinated mice was dependent on both the route of vaccination and the addition of the adjuvant. Neutralization of IL-17A confirmed a detrimental role for this cytokine during influenza infection. The expansion of vaccine-primed Th17 cells during influenza infection was also accompanied by an augmented lung neutrophilic response, which was partially responsible for mediating the increased morbidity. This discovery is of significance in the field of vaccinology, as it highlights the importance of both route of vaccination and adjuvant selection in vaccine development.


Assuntos
Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/farmacocinética , Infecções por Orthomyxoviridae/prevenção & controle , Células Th17/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Feminino , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia
7.
Bioorg Med Chem Lett ; 25(3): 547-53, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25553892

RESUMO

TLR4 agonists that favor TRIF-dependent signaling and the induction of type 1 interferons may have potential as vaccine adjuvants with reduced toxicity. CRX-547 (4), a member of the aminoalkyl glucosaminide 4-phosphate (AGP) class of lipid A mimetics possessing three (R)-3-decanoyloxytetradecanoyl groups and d-relative configuration in the aglycon, selectively reduces MyD88-dependent signaling resulting in TRIF-selective signaling, whereas the corresponding secondary ether lipid 6a containing (R)-3-decyloxytetradecanoyl groups does not. In order to determine which secondary acyl groups are important for the reduction in MyD88-dependent signaling activity of 4, the six possible ester/ether hybrid derivatives of 4 and 6a were synthesized and evaluated for their ability to induce NF-κB in a HEK293 cell reporter assay. An (R)-3-decanoyloxytetradecanoyl group on the 3-position of the d-glucosamine unit was found to be indispensable for maintaining low NF-κB activity irrespective of the substitutions (decyl or decanoyl) on the other two secondary positions. These results suggest that the carbonyl group of the 3-secondary lipid chain may impede homodimerization and/or conformational changes in the TLR4-MD2 complex necessary for MyD88 binding and pro-inflammatory cytokine induction.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Materiais Biocompatíveis/metabolismo , Lipídeo A/química , Proteínas Adaptadoras de Transporte Vesicular/química , Sítios de Ligação , Materiais Biocompatíveis/química , Citocinas/metabolismo , Glucosamina/análogos & derivados , Glucosamina/química , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Compostos Organofosforados/química , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Bioorg Med Chem Lett ; 25(6): 1318-23, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25698055

RESUMO

We report the synthesis and biological evaluation of a new series of 8-oxoadenines substituted at the 9-position with a 4-piperidinylalkyl moiety. In vitro evaluation of the piperidinyl-substituted oxoadenines 3a-g in human TLR7- or TLR8-transfected HEK293 cells and in human PBMCs indicated that TLR7/8 selectivity/potency and cytokine induction can be modulated by varying the length of the alkyl linker. Oxoadenine 3f containing a 5-carbon linker was found to be the most potent TLR7 agonist and IFNα inducer in the series whereas 3b possessing a 1-carbon linker was the most potent TLR8 agonist.


Assuntos
Adenina/análogos & derivados , Receptor 7 Toll-Like/metabolismo , Adenina/síntese química , Adenina/química , Adenina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Interferon-alfa/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Transfecção
9.
Pharmaceutics ; 16(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38258117

RESUMO

Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30-50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines.

10.
Vaccines (Basel) ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400099

RESUMO

Pseudomonas aeruginosa (Pa), a WHO priority 1 pathogen, resulted in approximately 559,000 deaths globally in 2019. Pa has a multitude of host-immune evasion strategies that enhance Pa virulence. Most clinical isolates of Pa are infected by a phage called Pf that has the ability to misdirect the host-immune response and provide structural integrity to biofilms. Previous studies demonstrate that vaccination against the coat protein (CoaB) of Pf4 virions can assist in the clearance of Pa from the dorsal wound model in mice. Here, a consensus peptide was derived from CoaB and conjugated to cross-reacting material 197 (CRM197). This conjugate was adjuvanted with a novel synthetic Toll-like receptor agonist (TLR) 4 agonist, INI-2002, and used to vaccinate mice. Mice vaccinated with CoaB-CRM conjugate and INI-2002 developed high anti-CoaB peptide-specific IgG antibody titers. Direct binding of the peptide-specific antibodies to whole-phage virus particles was demonstrated by ELISA. Furthermore, a functional assay demonstrated that antibodies generated from vaccinated mice disrupted the replicative cycle of Pf phages. The use of an adjuvanted phage vaccine targeting Pa is an innovative vaccine strategy with the potential to become a new tool targeting multi-drug-resistant Pa infections in high-risk populations.

11.
NPJ Vaccines ; 9(1): 100, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844494

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the top infectious killers in the world. The only licensed vaccine against TB, Bacille Calmette-Guérin (BCG), provides variable protection against pulmonary TB, especially in adults. Hence, novel TB vaccine approaches are urgently needed. Both Th1 and Th17 responses are necessary for protection against TB, yet effective adjuvants and vaccine delivery systems for inducing robust Th1 and Th17 immunity are lacking. Herein we describe a synthetic Mincle agonist, UM-1098, and a silica nanoparticle delivery system that drives Th1/Th17 responses to Mtb antigens. Stimulation of human peripheral blood mononuclear cells (hPBMCs) with UM-1098 induced high levels of Th17 polarizing cytokines IL-6, IL-1ß, IL-23 as well as IL-12p70, IL-4 and TNF-α in vitro. PBMCs from both C57BL/6 and BALB/c mice responded with a similar cytokine pattern in vitro and in vivo. Importantly, intramuscular (I.M.) vaccination with UM-1098-adjuvanted TB antigen M72 resulted in significantly higher antigen-specific IFN-γ and IL-17A levels in C57BL/6 wt mice than Mincle KO mice. Vaccination of C57BL/6 wt mice with immunodominant Mtb antigens ESAT6/Ag85B or M72 resulted in predominantly Th1 and Th17 responses and induced antigen-specific serum antibodies. Notably, in a virulent Mtb challenge model, vaccination with UM-1098 adjuvanted ESAT6/Ag85B or M72 significantly reduced lung bacterial burden when compared with unvaccinated mice and protection occurred in the absence of pulmonary inflammation. These data demonstrate that the synthetic Mincle agonist UM-1098 induces strong Th1 and Th17 immunity after vaccination with Mtb antigens and provides protection against Mtb infection in mice.

12.
ACS Appl Bio Mater ; 7(6): 3877-3889, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38832760

RESUMO

Adjuvants and immunomodulators that effectively drive a Th17-skewed immune response are not part of the standard vaccine toolkit. Vaccine adjuvants and delivery technologies that can induce Th17 or Th1/17 immunity and protection against bacterial pathogens, such as tuberculosis (TB), are urgently needed. Th17-polarized immune response can be induced using agonists that bind and activate C-type lectin receptors (CLRs) such as macrophage inducible C-type lectin (Mincle). A simple but effective strategy was developed for codelivering Mincle agonists with the recombinant Mycobacterium tuberculosis fusion antigen, M72, using tunable silica nanoparticles (SNP). Anionic bare SNP, hydrophobic phenyl-functionalized SNP (P-SNP), and cationic amine-functionalized SNP (A-SNP) of different sizes were coated with three synthetic Mincle agonists, UM-1024, UM-1052, and UM-1098, and evaluated for adjuvant activity in vitro and in vivo. The antigen and adjuvant were coadsorbed onto SNP via electrostatic and hydrophobic interactions, facilitating multivalent display and delivery to antigen presenting cells. The cationic A-SNP showed the highest coloading efficiency for the antigen and adjuvant. In addition, the UM-1098-adsorbed A-SNP formulation demonstrated slow-release kinetics in vitro, excellent stability over 12 months of storage, and strong IL-6 induction from human peripheral blood mononuclear cells. Co-adsorption of UM-1098 and M72 on A-SNP significantly improved antigen-specific humoral and Th17-polarized immune responses in vivo in BALB/c mice relative to the controls. Taken together, A-SNP is a promising platform for codelivery and proper presentation of adjuvants and antigens and provides the basis for their further development as a vaccine delivery platform for immunization against TB or other diseases for which Th17 immunity contributes to protection.


Assuntos
Antígenos de Bactérias , Lectinas Tipo C , Nanopartículas , Dióxido de Silício , Células Th17 , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/agonistas , Nanopartículas/química , Células Th17/imunologia , Animais , Dióxido de Silício/química , Camundongos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/química , Mycobacterium tuberculosis/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Teste de Materiais , Humanos , Feminino , Proteínas de Membrana/imunologia , Proteínas de Membrana/agonistas
13.
NPJ Vaccines ; 8(1): 97, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429853

RESUMO

Opioid use disorders (OUD) and opioid-related fatal overdoses are a public health concern in the United States. Approximately 100,000 fatal opioid-related overdoses occurred annually from mid-2020 to the present, the majority of which involved fentanyl or fentanyl analogs. Vaccines have been proposed as a therapeutic and prophylactic strategy to offer selective and long-lasting protection against accidental or deliberate exposure to fentanyl and closely related analogs. To support the development of a clinically viable anti-opioid vaccine suitable for human use, the incorporation of adjuvants will be required to elicit high titers of high-affinity circulating antibodies specific to the target opioid. Here we demonstrate that the addition of a synthetic TLR7/8 agonist, INI-4001, but not a synthetic TLR4 agonist, INI-2002, to a candidate conjugate vaccine consisting of a fentanyl-based hapten, F1, conjugated to the diphtheria cross-reactive material (CRM), significantly increased generation of high-affinity F1-specific antibody concentrations, and reduced drug distribution to the brain after fentanyl administration in mice.

14.
Vaccines (Basel) ; 12(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38250834

RESUMO

Despite the availability of effective vaccines against COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide, pressing the need for new vaccines with improved breadth and durability. We developed an adjuvanted subunit vaccine against SARS-CoV-2 using the recombinant receptor-binding domain (RBD) of spikes with synthetic adjuvants targeting TLR7/8 (INI-4001) and TLR4 (INI-2002), co-delivered with aluminum hydroxide (AH) or aluminum phosphate (AP). The formulations were characterized for the quantities of RBD, INI-4001, and INI-2002 adsorbed onto the respective aluminum salts. Results indicated that at pH 6, the uncharged RBD (5.73 ± 4.2 mV) did not efficiently adsorb to the positively charged AH (22.68 ± 7.01 mV), whereas it adsorbed efficiently to the negatively charged AP (-31.87 ± 0.33 mV). Alternatively, pre-adsorption of the TLR ligands to AH converted it to a negatively charged particle, allowing for the efficient adsorption of RBD. RBD could also be directly adsorbed to AH at a pH of 8.1, which changed the charge of the RBD to negative. INI-4001 and INI-2002 efficiently to AH. Following vaccination in C57BL/6 mice, both aluminum salts promoted Th2-mediated immunity when used as the sole adjuvant. Co-delivery with TLR4 and/or TLR7/8 ligands efficiently promoted a switch to Th1-mediated immunity instead. Measurements of viral neutralization by serum antibodies demonstrated that the addition of TLR ligands to alum also greatly improved the neutralizing antibody response. These results indicate that the addition of a TLR7/8 and/or TLR4 agonist to a subunit vaccine containing RBD antigen and alum is a promising strategy for driving a Th1 response and neutralizing antibody titers targeting SARS-CoV-2.

15.
NPJ Vaccines ; 8(1): 107, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488109

RESUMO

Opioid use disorders (OUD) and overdose are public health threats worldwide. Widespread access to highly potent illicit synthetic opioids such as fentanyl is driving the recent rise in fatal overdoses. Vaccines containing fentanyl-based haptens conjugated to immunogenic carrier proteins offer a long-lasting, safe, and cost-effective strategy to protect individuals from overdose upon accidental or deliberate exposure to fentanyl and its analogs. Prophylactic or therapeutic active immunization with an anti-fentanyl vaccine induces the production of fentanyl-specific antibodies that bind the drug in the blood and prevent its distribution to the brain, which reduces its reinforcing effects and attenuates respiratory depression and bradycardia. To increase the efficacy of a lead anti-fentanyl vaccine, this study tested whether the incorporation of synthetic toll-like receptor (TLR) 4 and TLR7/8 agonists as vaccine adjuvants would increase vaccine efficacy against fentanyl challenge, overdose, and self-administration in either rats or Hanford miniature pigs. Formulation of the vaccine with a nucleolipid TLR7/8 agonist enhanced its immunogenicity and efficacy in preventing fentanyl-induced respiratory depression, analgesia, bradycardia, and self-administration in either rats or mini-pigs. These studies support the use of TLR7/8 adjuvants in vaccine formulations to improve their clinical efficacy against OUD and potentially other substance use disorders (SUD).

16.
J Med Chem ; 66(20): 13900-13917, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37847244

RESUMO

Most known synthetic toll-like receptor 4 (TLR4) agonists are carbohydrate-based lipid-A mimetics containing several fatty acyl chains, including a labile 3-O-acyl chain linked to the C-3 position of the non-reducing sugar known to undergo cleavage impacting stability and resulting in loss of activity. To overcome this inherent instability, we rationally designed a new class of chemically more stable synthetic TLR4 ligands that elicit robust innate and adaptive immune responses. This new class utilized a diamino allose phosphate (DAP) scaffold containing a nonhydrolyzable 3-amide bond instead of the classical 3-ester. Accordingly, the DAPs have significantly improved thermostability in aqueous formulations and potency relative to other known natural and synthetic TLR4 ligands. Furthermore, the DAP analogues function as potent vaccine adjuvants to enhance influenza-specific antibodies in mice and provide protection against lethal influenza virus challenges. This novel set of TLR4 ligands show promise as next-generation vaccine adjuvants and stand-alone immunomodulators.


Assuntos
Adjuvantes de Vacinas , Receptor 4 Toll-Like , Animais , Camundongos , Fatores Imunológicos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Ligantes , Anticorpos Antivirais
17.
Pharmaceutics ; 14(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890352

RESUMO

A diversity of vaccines is necessary to reduce the mortality and morbidity of SARS-CoV-2. Vaccines must be efficacious, easy to manufacture, and stable within the existing cold chain to improve their availability around the world. Recombinant protein subunit vaccines adjuvanted with squalene-based emulsions such as AS03™ and MF59™ have a long and robust history of safe, efficacious use with straightforward production and distribution. Here, subunit vaccines were made with squalene-based emulsions containing novel, synthetic toll-like receptor (TLR) agonists, INI-2002 (TLR4 agonist) and INI-4001 (TLR7/8 agonist), using the recombinant receptor-binding domain (RBD) of SARS-CoV-2 S protein as an antigen. The addition of the TLR4 and TLR7/8 agonists, alone or in combination, maintained the formulation characteristics of squalene-based emulsions, including a sterile filterable droplet size (<220 nm), high homogeneity, and colloidal stability after months of storage at 4, 25, and 40 °C. Furthermore, the addition of the TLR agonists skewed the immune response from Th2 towards Th1 in immunized C57BL/6 mice, resulting in an increased production of IgG2c antibodies and a lower antigen-specific production of IL-5 with a higher production of IFNγ by lymphocytes. As such, incorporating TLR4 and TLR7/8 agonists into emulsions leveraged the desirable formulation and stability characteristics of emulsions and can induce Th1-type humoral and cell-mediated immune responses to combat the continued threat of SARS-CoV-2.

18.
Sci Rep ; 12(1): 16860, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258023

RESUMO

Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.


Assuntos
Coqueluche , Animais , Criança , Humanos , Lactente , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Vacina contra Coqueluche , Receptor 7 Toll-Like/agonistas , Vacinação , Vacinas Acelulares , Coqueluche/epidemiologia
19.
ChemMedChem ; 16(8): 1246-1251, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33415819

RESUMO

Mincle agonists have been shown to induce inflammatory cytokine production, such as tumor necrosis factor-alpha (TNF) and promote the development of a Th1/Th17 immune response that might be crucial to development of effective vaccination against pathogens such as Mycobacterium tuberculosis. As an expansion of our previous work, a library of 6,6'-amide and sulfonamide α,α-d-trehalose compounds with various substituents on the aromatic ring was synthesized efficiently in good to excellent yields. These compounds were evaluated for their ability to activate the human C-type lectin receptor Mincle by the induction of cytokines from human peripheral blood mononuclear cells. A preliminary structure-activity relationship (SAR) of these novel trehalose diamides and sulfonamides revealed that aryl amide-linked trehalose compounds demonstrated improved activity and relatively high potency cytokine production compared to the Mincle ligand trehalose dibehenate adjuvant (TDB) and the natural ligand trehalose dimycolate (TDM) inducing dose-dependent and human-Mincle-specific stimulation in a HEK reporter cell line.


Assuntos
Adjuvantes Imunológicos/farmacologia , Lectinas Tipo C/agonistas , Receptores Imunológicos/agonistas , Sulfonamidas/farmacologia , Trealose/análogos & derivados , Trealose/farmacologia , Adjuvantes Imunológicos/síntese química , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/síntese química , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Pharm ; 593: 120119, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33249249

RESUMO

To date there is no clinically approved adjuvant to drive a protective T-helper cell 17 (Th17) immune response against Mycobacterium tuberculosis (Mtb). Trehalose Dimycolate (TDM) is a glycolipid molecule found in the cell wall of Mtb and similar species. Our team has discovered novel synthetic TDM derivatives that target Mincle receptors and when presented on the surface of amine functionalized silica nanoparticles (A-SNPs) adopt the requisite supramolecular structure for Mincle receptor agonism. Here we describe the preparation and characterization methods for these critical silica nanoparticles (SNPs) co-loaded with Mincle agonists (MAs) and a model antigen. In this work, A-SNPs with a particle diameter of 246 ± 11 nm were prepared and examined for co-adsorption of two synthetic MAs along with ovalbumin (OVA). Due to the insolubility of the studied MAs in aqueous environment, aggregation of the MAs made separation of the adjuvant-loaded A-SNPs from the free-form MAs via centrifugation very challenging. To facilitate separation, we synthesized modified SNPs with comparable amine surface functionalization to the original A-SNPs, but with a superparamagnetic iron oxide core (M-A-SNPs), to allow for magnetic separation. We also substituted Alexa Fluor 488-labeled ovalbumin (AF 488 OVA) for the un-tagged OVA to improve the sensitivity of our quantitation method. A RP-HPLC method was developed to simultaneously determine the amount of adsorption of both the Mincle adjuvant and the model antigen to the A-SNPs. AF488 OVA demonstrated higher than 90% adsorption, with or without the co-adsorption of MAs. Likewise, MAs exhibited higher than 80% adsorption in the presence or absence of antigen. The developed formulations were tested in vitro using murine RAW cells and human peripheral blood mononuclear cells, exhibiting good cytokine induction in both cell lines. Results from these studies indicate that A-SNPs could be used as a customizable presentation platform to co-deliver antigens along with different MAs of varying structural features and biophysical properties.


Assuntos
Nanopartículas , Vacinas , Adsorção , Animais , Humanos , Lectinas Tipo C , Leucócitos Mononucleares , Camundongos , Ovalbumina , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa