Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(11): 945-957, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453143

RESUMO

Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.


Assuntos
Simulação por Computador , Linhagem , Doenças Retinianas , Humanos , Doenças Retinianas/genética , Feminino , Masculino , Mutação , Genes Dominantes , Predisposição Genética para Doença , Biologia Computacional/métodos , Fenótipo , Adulto
2.
Ophthalmol Retina ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089460

RESUMO

OBJECTIVE: To refine retinal PRPH2-associated retinal degeneration (PARD) phenotypes using multimodal imaging. DESIGN: Retrospective review of clinical records and multimodal imaging. SUBJECTS: Patients who visited the inherited retinal degeneration (IRD) clinic at two tertiary referral eye centers with molecularly confirmed IRD due to PRPH2 variants. METHODS: Retinal imaging was reviewed using ultra-widefield (UWF) pseudocolor, UWF fundus autofluorescence (FAF), and spectral-domain optical coherence tomography (SD-OCT). Phenotypes were identified in the macular or peripheral region. A combined phenotype was considered if any phenotypes were present in both macular and peripheral regions. Mixed phenotypes in the macula or peripheral retina were considered if there were two distinct phenotypes identified in the same eye. The presence or absence of atrophy in the macular or peripheral area was also noted. MAIN OUTCOME MEASURE: Grading of multimodal imaging by phenotype and atrophy. RESULTS: A total of 144 eyes of 72 patients were included in this study. The majority of the eyes had combined macular and peripheral phenotypes (89/14, 61.8%), while 44 (30.6%) eyes had isolated macular findings, and 11 (7.6%) had isolated peripheral findings. Twenty-five eyes were classified with mixed macular phenotypes while fundus flavimaculatus dystrophy type was the most common combined macular and peripheral phenotype (54/144, 37.5%): n = 10 with macular dystrophy and macular flavimaculatus dystrophy, and n = 15 with butterfly pattern dystrophy and macular flavimaculatus dystrophy. Nearly half of the eyes (71/144, 49.3%) were identified to have concomitant outer retinal atrophy. Fundus flavimaculatus type dystrophy was also associated with the highest proportion of concomitant atrophy (57/71, 80.3%). CONCLUSION: PARD demonstrates a wide array of phenotypes using multimodal imaging. We report that combinations of classically described phenotypes were often seen. Additionally, macular and peripheral atrophy were often associated with PARD phenotypes. Refinement of PARD phenotypes using newer multimodal imaging techniques will likely assist diagnosis and future clinical trials.

3.
Ophthalmic Genet ; 45(2): 140-146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288966

RESUMO

OBJECTIVE: To develop an updated staging system for long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency (LCHADD) chorioretinopathy based on contemporary multimodal imaging and electrophysiology. METHODS: We evaluated forty cases of patients with genetically confirmed LCHADD or trifunctional protein deficiency (TFPD) enrolled in a prospective natural history study. Wide-field fundus photographs, fundus autofluorescence (FAF), optical coherence tomography (OCT), and full-field electroretinogram (ffERG) were reviewed and graded for severity. RESULTS: Two independent experts first graded fundus photos and electrophysiology to classify the stage of chorioretinopathy based upon an existing published system. With newer imaging modalities and improved electrophysiology, many patients did not fit cleanly into a single traditional staging group. Therefore, we developed a novel staging system that better delineated the progression of LCHADD retinopathy. We maintained the four previous delineated stages but created substages A and B in stages 2 to 3 to achieve better differentiation. DISCUSSION: Previous staging systems of LCHADD chorioretinopathy relied on only on the assessment of standard 30 to 45-degree fundus photographs, visual acuity, fluorescein angiography (FA), and ffERG. Advances in recordings of ffERG and multimodal imaging with wider fields of view, allow better assessment of retinal changes. Following these advanced assessments, seven patients did not fit neatly into the original classification system and were therefore recategorized under the new proposed system. CONCLUSION: The new proposed staging system improves the classification of LCHADD chorioretinopathy, with the potential to lead to a deeper understanding of the disease's progression and serve as a more reliable reference point for future therapeutic research.


Assuntos
Cardiomiopatias , Doenças da Coroide , Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Doenças Retinianas , Rabdomiólise , Humanos , Estudos Prospectivos , Doenças Retinianas/diagnóstico , Retina/metabolismo , Tomografia de Coerência Óptica , Angiofluoresceinografia/métodos
4.
Br J Ophthalmol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079892

RESUMO

BACKGROUND/AAIMS: Congenital stationary night blindness (CSNB) is an inherited retinal disease that is often associated with high myopia and can be caused by pathological variants in multiple genes, most commonly CACNA1F, NYX and TRPM1. High myopia is associated with retinal degeneration and increased risk for retinal detachment. Slowing the progression of myopia in patients with CSNB would likely be beneficial in reducing risk, but before interventions can be considered, it is important to understand the natural history of myopic progression. METHODS: This multicentre, retrospective study explored CSNB caused by variants in CACNA1F, NYX or TRPM1 in patients who had at least 6 measurements of their spherical equivalent of refraction (SER) before the age of 18. A mixed-effect model was used to predict progression of SER overtime and differences between genotypes were evaluated. RESULTS: 78 individuals were included in this study. All genotypes showed a significant myopic predicted SER at birth (-3.076D, -5.511D and -5.386D) for CACNA1F, NYX and TRPM1 respectively. Additionally, significant progression of myopia per year (-0.254D, -0.257D and -0.326D) was observed for all three genotypes CACNA1F, NYX and TRPM1, respectively. CONCLUSIONS: Patients with CSNB tend to be myopic from an early age and progress to become more myopic with age. Patients may benefit from long-term myopia slowing treatment in the future and further studies are indicated. Additionally, CSNB should be considered in the differential diagnosis for early-onset myopia.

5.
Saudi J Ophthalmol ; 37(4): 287-295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155675

RESUMO

The BEST1 gene encodes bestrophin-1, a homopentameric ion channel expressed in the retinal pigment epithelium (RPE), where it localizes to the basolateral plasma membrane. Pathogenic variants in this gene can cause different autosomal dominant and recessive inherited retinal diseases (IRDs), collectively named "bestrophinopathies." These disorders share a number of clinical and molecular features that make them an appealing target for gene therapy. Clinically, bestrophinopathies are often slowly progressive with a wide window of opportunity, and the presence of subretinal material (vitelliform deposits and/or fluid) as a hallmark of these conditions provides an easily quantifiable endpoint in view of future clinical trials. From a molecular standpoint, most BEST1 pathogenic variants have been shown to cause either loss of function (LOF) of the protein or a dominant-negative (DN) effect, with a smaller subset causing a toxic gain of function (GOF). Both LOF and DN mutations may be amenable to gene augmentation alone. On the other hand, individuals harboring GOF variants would require a combination of gene silencing and gene augmentation, which has been shown to be effective in RPE cells derived from patients with Best disease. In this article, we review the current knowledge of BEST1-related IRDs and we discuss how their molecular and clinical features are being used to design novel and promising therapeutic strategies.

6.
Saudi J Ophthalmol ; 37(4): 276-286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155670

RESUMO

Retinitis pigmentosa GTPase regulator (RPGR)-related retinopathy is a retinal dystrophy inherited in a X-linked recessive manner that typically causes progressive visual loss starting in childhood with severe visual impairment by the fourth decade of life. It manifests as an early onset and severe form of retinitis pigmentosa. There are currently no effective treatments for RPGR-related retinopathy; however, there are multiple clinical trials in progress exploring gene augmentation therapy aimed at slowing down or halting the progression of disease and possibly restoring visual function. This review focuses on the molecular biology, clinical manifestations, and the recent progress of gene therapy clinical trials.

7.
Am J Ophthalmol Case Rep ; 32: 101958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38161518

RESUMO

Purpose: To report the clinical utility of optical coherence tomography angiography (OCTA) for demonstrating choroidal neovascularization (CNV) associated with Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency (LCHADD) retinopathy. Methods: Thirty-three participants with LCHADD (age 7-36 years; median 17) were imaged with OCTA and the Center for Ophthalmic Optics & Lasers Angiography Reading Toolkit (COOL-ART) software was implemented to process OCTA scans. Results: Seven participants (21 %; age 17-36 years; median 25) with LCHADD retinopathy demonstrated evidence of CNV by retinal examination or presence of CNV within outer retinal tissue on OCTA scans covering 3 × 3 and/or 6 × 6-mm. These sub-clinical CNVs are adjacent to hyperpigmented areas in the posterior pole. CNV presented at stage 2 or later of LCHADD retinopathy prior to the disappearance of RPE pigment in the macula. Conclusion: OCTA can be applied as a non-invasive method to evaluate the retinal and choroidal microvasculature. OCTA can reveal CNV in LCHADD even when the clinical exam is inconclusive. These data suggest that the incidence of CNV is greater than expected and can occur even in the early stages of LCHADD retinopathy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa