Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Risk Anal ; 38(10): 2105-2127, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29694686

RESUMO

We assessed transboundary wildfire exposure among federal, state, and private lands and 447 communities in the state of Arizona, southwestern United States. The study quantified the relative magnitude of transboundary (incoming, outgoing) versus nontransboundary (i.e., self-burning) wildfire exposure based on land tenure or community of the simulated ignition and the resulting fire perimeter. We developed and described several new metrics to quantify and map transboundary exposure. We found that incoming transboundary fire accounted for 37% of the total area burned on large parcels of federal and state lands, whereas 63% of the area burned was burned by ignitions within the parcel. However, substantial parcel to parcel variation was observed for all land tenures for all metrics. We found that incoming transboundary fire accounted for 66% of the total area burned within communities versus 34% of the area burned by self-burning ignitions. Of the total area burned within communities, private lands contributed the largest proportion (36.7%), followed by national forests (19.5%), and state lands (15.4%). On average seven land tenures contributed wildfire to individual communities. Annual wildfire exposure to structures was highest for wildfires ignited on state and national forest land, followed by tribal, private, and BLM. We mapped community firesheds, that is, the area where ignitions can spawn fires that can burn into communities, and estimated that they covered 7.7 million ha, or 26% of the state of Arizona. Our methods address gaps in existing wildfire risk assessments, and their implementation can help reduce fragmentation in governance systems and inefficiencies in risk planning.

2.
Sci Total Environ ; 784: 147057, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088051

RESUMO

The 2018 Camp fire destroyed the town of Paradise, California and resulted in 82 fatalities, the worst wildfire disaster in the US to date. Future disasters of similar or greater magnitude are inevitable given predicted climate change but remain highly uncertain in terms of location and timing. As with other natural disasters, simulation models are one of the primary tools to map risk and design prevention strategies. However, risk assessments have focused on estimation of mean values rather than predicting extreme events that are increasingly becoming a reality in many parts of the globe. Using the western US as a study area, we synthesized newer wildfire simulation and building location data (54 million fires, 25 million building locations) and compared the outputs to several sources of observed exposure data. The simulations used synchronized weather among spatial simulation subunits, thereby providing estimates of extreme fire seasons, fire events within them, and exceedance probabilities at multiple scales. We found that annual area burned was accurately replicated by simulations but building exposure was substantially overestimated, although the relatively small historical sample size might have influenced the comparison. We identified extreme fire seasons in the simulation record (10,000 fire years) that exceeded historical fire seasons by 278% in terms of area burned, and 1255% in terms of buildings exposed, under contemporary climate. Simulated building exposure peaked in specific regions along gradients of building density and burnable fuels. The study is the first to explore large scale extreme wildfire exposure in terms of both annual variability and magnitude, providing a broad foundation of methods to advance wildfire disaster prediction.

3.
Data Brief ; 17: 124-128, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29349106

RESUMO

We provide the wildland urban interface (WUI) map of the autonomous community of Catalonia (Northeastern Spain). The map encompasses an area of some 3.21 million ha and is presented as a 150-m resolution raster dataset. Individual housing location, structure density and vegetation cover data were used to spatially assess in detail the interface, intermix and dispersed rural WUI communities with a geographical information system. Most WUI areas concentrate in the coastal belt where suburban sprawl has occurred nearby or within unmanaged forests. This geospatial information data provides an approximation of residential housing potential for loss given a wildfire, and represents a valuable contribution to assist landscape and urban planning in the region.

4.
PLoS One ; 12(3): e0172867, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257416

RESUMO

We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments.


Assuntos
Conservação dos Recursos Naturais , Incêndios , Medição de Risco , Desastres , Governo , Humanos , Oregon , Gestão de Riscos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa