Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(23): 9197-9201, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31145608

RESUMO

Identifying the intrinsic electrocatalytic activity of nanomaterials is challenging, as their characterization usually requires additives and binders whose contributions are difficult to dissect. Herein, we use nano impact electrochemistry as an additive-free method to overcome this problem. Due to the efficient mass transport at individual catalyst nanoparticles, high current densities can be realized. High-resolution bright-field transmission electron microscopy and selected area diffraction studies of the catalyst particles before and after the experiments provide valuable insights in the transformation of the nanomaterials during harsh oxygen evolution reaction (OER) conditions. We demonstrate this for 4 nm sized CoFe2O4 spinel nanoparticles. It is revealed that these particles retain their size and crystal structure even after OER at current densities as high as several kA·m-2. The steady-state current scales with the particle size distribution and is limited by the diffusion of produced oxygen away from the particle. This versatilely applicable method provides new insights into intrinsic nanocatalyst activities, which is key to the efficient development of improved and precious metal-free catalysts for renewable energy technologies.

2.
Angew Chem Int Ed Engl ; 58(24): 8221-8225, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30974013

RESUMO

The impact of individual HAuCl4 nanoreactors is measured electrochemically, which provides operando insights and precise control over the modification of electrodes with functional nanoparticles of well-defined size. Uniformly sized micelles are loaded with a dissolved metal salt. These solution-phase precursor entities are then reduced electrochemically-one by one-to form nanoparticles (NPs). The charge transferred during the reduction of each micelle is measured individually and allows operando sizing of each of the formed nanoparticles. Thus, particles of known number and sizes can be deposited homogenously even on nonplanar electrodes. This is demonstrated for the decoration of cylindrical carbon fibre electrodes with 25±7 nm sized Au particles from HAuCl4 -filled micelles. These Au NP-decorated electrodes show great catalyst performance for ORR (oxygen reduction reaction) already at low catalyst loadings. Hence, collisions of individual precursor-filled nanocontainers are presented as a new route to nanoparticle-modified electrodes with high catalyst utilization.

3.
J Am Chem Soc ; 140(40): 12658-12661, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29995398

RESUMO

Despite the frequent use of silver nanoparticles in consumer products and medical treatments, their reactivity and degradation in aqueous suspensions are still under debate. Here we elucidate this reactivity by an in situ opto- and spectro-electrochemical approach. Using dark-field microscopy coupled to a spectrophotometer and to an electrochemical cell, redox reactions of individual silver nanoparticles are studied in the presence of chloride. The intensity and spectral position of the plasmon resonance of an individual particle are tracked simultaneously in real time during cyclic voltammetry. They both change almost instantaneously with the detected current in a chemically reversible way. Thus, it is evidenced that the intensity decrease of the optical signal at the silver peak position is caused by the reversible formation of silver chloride and not by dissolution of silver. Moreover, at large positive potentials, further transformation to silver oxide or chlorite is revealed spectroscopically, although the electrochemical current is hidden by water and chloride oxidation. Thus, the combination of electrochemistry with dark-field microscopy and hyperspectral imaging is introduced as a new tool for real-time analysis of (electro-)chemical reactions of nanoparticles on a single-entity level.

4.
Chemistry ; 24(36): 9051-9060, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29522654

RESUMO

Spherical bimetallic AgAu nanoparticles in the molar ratios 30:70, 50:50, and 70:30 with diameters of 30 to 40 nm were analyzed together with pure silver and gold nanoparticles of the same size. Dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS) were used for size determination. Cyclic voltammetry (CV) was used to determine the nanoalloy composition, together with atomic absorption spectroscopy (AAS), energy-dispersive X-ray spectroscopy (EDX) and ultraviolet-visible (UV/Vis) spectroscopy. Underpotential deposition (UPD) of lead (Pb) on the particle surface gave information about its spatial elemental distribution and surface area. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were applied to study the shape and the size of the nanoparticles. X-ray powder diffraction gave the crystallite size and the microstrain. The particles form a solid solution (alloy) with an enrichment of silver on the nanoparticle surface, including some silver-rich patches. UPD indicated that the surface only consists of silver atoms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa