Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol Evol ; 11(6): 1602-1617, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076746

RESUMO

The clinical presentations of papillomavirus (PV) infections come in many different flavors. While most PVs are part of a healthy skin microbiota and are not associated to physical lesions, other PVs cause benign lesions, and only a handful of PVs are associated to malignant transformations linked to the specific activities of the E5, E6, and E7 oncogenes. The functions and origin of E5 remain to be elucidated. These E5 open reading frames (ORFs) are present in the genomes of a few polyphyletic PV lineages, located between the early and the late viral gene cassettes. We have computationally assessed whether these E5 ORFs have a common origin and whether they display the properties of a genuine gene. Our results suggest that during the evolution of Papillomaviridae, at least four events lead to the presence of a long noncoding DNA stretch between the E2 and the L2 genes. In three of these events, the novel regions evolved coding capacity, becoming the extant E5 ORFs. We then focused on the evolution of the E5 genes in AlphaPVs infecting primates. The sharp match between the type of E5 protein encoded in AlphaPVs and the infection phenotype (cutaneous warts, genital warts, or anogenital cancers) supports the role of E5 in the differential oncogenic potential of these PVs. In our analyses, the best-supported scenario is that the five types of extant E5 proteins within the AlphaPV genomes may not have a common ancestor. However, the chemical similarities between E5s regarding amino acid composition prevent us from confidently rejecting the model of a common origin. Our evolutionary interpretation is that an originally noncoding region entered the genome of the ancestral AlphaPVs. This genetic novelty allowed to explore novel transcription potential, triggering an adaptive radiation that yielded three main viral lineages encoding for different E5 proteins, displaying distinct infection phenotypes. Overall, our results provide an evolutionary scenario for the de novo emergence of viral genes and illustrate the impact of such genotypic novelty in the phenotypic diversity of the viral infections.


Assuntos
Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Evolução Molecular , Genoma Viral , Fases de Leitura Aberta , Papillomaviridae/classificação , Filogenia , Recombinação Genética
2.
Infect Genet Evol ; 45: 198-204, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600594

RESUMO

Human Papillomaviruses (HPVs) are involved in the etiology of anogenital and head and neck cancers. The HPV DNA prevalence greatly differs by anatomical site. Indeed, the high rates of viral DNA prevalence in anal and cervical carcinomas contrast with the lower fraction of cancer cases attributable to HPVs in other anatomical sites, chiefly the vulva, the penis and head and neck. Here we analyzed 2635 Formalin Fixed Paraffin Embedded surgical samples that had previously tested negative for the presence of HPVs DNA using the SPF10/DEIA procedure, in order to identify the presence of other PVs not explicitly targeted by standard molecular epidemiologic approaches. All samples were reanalyzed using five broad-PV PCR primer sets (CP1/2, FAP6064/FAP64, SKF/SKR, MY9/MY11, MFI/MFII) targeting the main PV main clades. In head and neck carcinoma samples (n=1141), we recovered DNA from two BetaHPVs, namely HPV20 and HPV21, and from three cutaneous AlphaPVs, namely HPV2, HPV57 and HPV61. In vulvar squamous cell carcinoma samples (n=902), we found one of the samples containing DNA of one cutaneous HPV, namely HPV2, and 29 samples contained DNA from essentially mucosal HPVs. In penile squamous cell carcinoma samples (n=592), we retrieved the DNA of HPV16 in 16 samples. Our results show first that the SPF10/DEIA is very sensitive, as we recovered only 2.1% (55/2635) false negative results; second, that although the DNA of cutaneous HPVs can be detected in cancer samples, their relative contribution remains anyway minor (0.23%; 6/2635) and may be neglected for screening and vaccination purposes; and third, their contribution to malignancy is not necessarily warranted and needs to be elucidated.


Assuntos
Carcinoma de Células Escamosas/virologia , Neoplasias de Cabeça e Pescoço/virologia , Papillomaviridae/classificação , Papillomaviridae/genética , Neoplasias Penianas/virologia , Neoplasias Vulvares/virologia , Carcinoma de Células Escamosas/epidemiologia , Feminino , Genótipo , Técnicas de Genotipagem , Neoplasias de Cabeça e Pescoço/epidemiologia , Histocitoquímica , Humanos , Masculino , Epidemiologia Molecular , Neoplasias Penianas/epidemiologia , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Neoplasias Vulvares/epidemiologia
3.
Evol Med Public Health ; 2015(1): 32-51, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25634317

RESUMO

Papillomaviruses (PVs) are a numerous family of small dsDNA viruses infecting virtually all mammals. PVs cause infections without triggering a strong immune response, and natural infection provides only limited protection against reinfection. Most PVs are part and parcel of the skin microbiota. In some cases, infections by certain PVs take diverse clinical presentations from highly productive self-limited warts to invasive cancers. We propose PVs as an excellent model system to study the evolutionary interactions between the immune system and pathogens causing chronic infections: genotypically, PVs are very diverse, with hundreds of different genotypes infecting skin and mucosa; phenotypically, they display extremely broad gradients and trade-offs between key phenotypic traits, namely productivity, immunogenicity, prevalence, oncogenicity and clinical presentation. Public health interventions have been launched to decrease the burden of PV-associated cancers, including massive vaccination against the most oncogenic human PVs, as well as systematic screening for PV chronic anogenital infections. Anti-PVs vaccines elicit protection against infection, induce cross-protection against closely related viruses and result in herd immunity. However, our knowledge on the ecological and intrapatient dynamics of PV infections remains fragmentary. We still need to understand how the novel anthropogenic selection pressures posed by vaccination and screening will affect viral circulation and epidemiology. We present here an overview of PV evolution and the connection between PV genotypes and the phenotypic, clinical manifestations of the diseases they cause. This differential link between viral evolution and the gradient cancer-warts-asymptomatic infections makes PVs a privileged playground for evolutionary medicine research.

4.
Genome Biol Evol ; 7(8): 2117-35, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26139833

RESUMO

Viruses rely completely on the hosts' machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response.


Assuntos
Códon , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Composição de Bases , Proteínas do Capsídeo/genética , DNA Viral/química , Evolução Molecular , Expressão Gênica , Genes Virais , Humanos , Neoplasias/virologia , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/diagnóstico , Verrugas/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa