Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(3): 3855-3873, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31930559

RESUMO

Traumatic brain injury (TBI) is one of the most frequent causes of brain injury and mortality in young adults with detrimental sequelae such as cognitive impairments, epilepsy, and attention-deficit hyperactivity disorder. TBI modulates the neuronal excitability resulting in propagation of a neuronal activity-driven gene expression program. However, the impact of such neuronal activity mediated gene expression in TBI has been poorly studied. In this study we analyzed mouse mutants of the prototypical neuronal activity-dependent transcription factor SRF (serum response factor) in a weight-drop TBI model. Neuron-restricted SRF deletion elevated TBI inflicted mortality suggesting a neuroprotective SRF function during TBI. Behavioral inspection uncovered elevated locomotor activity in Srf mutant mice after TBI in contrast to hypoactivity observed in wild-type littermates. This indicates an SRF role in modulation of TBI-associated alterations in locomotor activity. Finally, induction of a neuronal activity induced gene expression program composed of immediate early genes (IEGs) such as Egr1, Egr2, Egr3, Npas4, Atf3, Arc, Ptgs2, and neuronal pentraxins (Nptx2) was compromised upon SRF depletion. Overall, our data show a role of neuronal activity-mediated gene transcription during TBI and suggest a molecular link between TBI and such post-TBI neurological comorbidities involving hyperactivity phenotypes.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Neurônios/metabolismo , Fator de Resposta Sérica/metabolismo , Alelos , Animais , Peso Corporal/fisiologia , Lesões Encefálicas Traumáticas/fisiopatologia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Teste de Campo Aberto , Reação em Cadeia da Polimerase em Tempo Real , Fator de Resposta Sérica/genética
2.
Brain Behav Immun ; 81: 228-246, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207335

RESUMO

Traumatic brain injury (TBI) and ethanol intoxication (EI) frequently coincide, particularly in young subjects. However, the mechanisms of their interaction remain poorly understood. Among other pathogenic pathways, TBI induces glial activation and neuroinflammation in the hippocampus, resulting in acute and chronic hippocampal dysfunction. In this regard, we investigated the role of EI affecting these responses unfolding after TBI. We used a blunt, weight-drop approach to model TBI in mice. Male mice were pre-administered with ethanol or vehicle to simulate EI. The neuroinflammatory response in the hippocampus was assessed by monitoring the expression levels of >20 cytokines, the phosphorylation status of transcription factors and the phenotype of microglia and astrocytes. We used AS1517499, a brain-permeable STAT6 inhibitor, to elucidate the role of this pathway in the EI/TBI interaction. We showed that TBI causes the elevation of IL-33, IL-1ß, IL-38, TNF-α, IFN-α, IL-19 in the hippocampus at 3 h time point and concomitant EI results in the dose-dependent downregulation of IL-33, IL-1ß, IL-38, TNF-α and IL-19 (but not of IFN-α) and in the selective upregulation of IL-13 and IL-12. EI is associated with the phosphorylation of STAT6 and the transcription of STAT6-controlled genes. Moreover, ethanol-induced STAT6 phosphorylation and transcriptional activation can be recapitulated in vitro by concomitant exposure of neurons to ethanol, depolarization and inflammatory stimuli (simulating the acute trauma). Acute STAT6 inhibition prevents the effects of EI on IL-33 and TNF-α, but not on IL-13 and negates acute EI beneficial effects on TBI-associated neurological impairment. Additionally, EI is associated with reduced microglial activation and astrogliosis as well as preserved synaptic density and baseline neuronal activity 7 days after TBI and all these effects are prevented by acute administration of the STAT6 inhibitor concomitant to EI. EI concomitant to TBI exerts significant immunomodulatory effects on cytokine induction and microglial activation, largely through the activation of STAT6 pathway, ultimately with beneficial outcomes.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Etanol/farmacologia , Fator de Transcrição STAT6/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Microglia/metabolismo , Microglia/patologia , Neuroimunomodulação/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fator de Transcrição STAT6/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
3.
Biomacromolecules ; 15(7): 2461-74, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24954629

RESUMO

Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low µM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Materiais Biocompatíveis/química , Toxinas Botulínicas/antagonistas & inibidores , Cátions/química , Dendrímeros/química , Animais , Antígenos de Bactérias , Materiais Biocompatíveis/farmacologia , Transporte Biológico , Chlorocebus aethiops , Citosol/efeitos dos fármacos , Citosol/metabolismo , Dendrímeros/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HeLa , Humanos , Bicamadas Lipídicas/química , Células Vero
4.
J Neurotrauma ; 35(19): 2317-2329, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29463176

RESUMO

Traumatic brain injury (TBI) induces a neuroinflammatory response resulting in astrocyte and microglia activation at the lesion site. This involves upregulation of neuroinflammatory genes, including chemokines and interleukins. However, so far, there is lack of knowledge on transcription factors (TFs) modulating this TBI-associated gene expression response. Herein, we analyzed activating transcription factor 3 (ATF3), a TF encoding a regeneration-associated gene (RAG) predominantly studied in peripheral nervous system (PNS) injury. ATF3 contributes to PNS axon regeneration and was shown before to regulate inflammatory processes in other injury models. In contrast to PNS injury, data on ATF3 in central nervous system (CNS) injury are sparse. We used Atf3 mouse mutants and a closed-head weight-drop-based TBI model in adult mice to target the rostrolateral cortex resulting in moderate injury severity. Post-TBI, ATF3 was upregulated already at early time points (i.e,. 1-4 h) post-injury in the brain. Mortality and weight loss upon TBI were slightly elevated in Atf3 mutants. ATF3 deficiency enhanced TBI-induced paresis and hematoma formation, suggesting that ATF3 limits these injury outcomes in wild-type mice. Next, we analyzed TBI-associated RAG and inflammatory gene expression in the cortical impact area. In contrast to the PNS, only some RAGs (Atf3, Timp1, and Sprr1a) were induced by TBI, and, surprisingly, some RAG encoding neuropeptides were downregulated. Notably, we identified ATF3 as TF-regulating proneuroinflammatory gene expression, including CCL and CXCL chemokines (Ccl2, Ccl3, Ccl4, and Cxcl1) and lipocalin. In Atf3 mutant mice, mRNA abundance was further enhanced upon TBI compared to wild-type mice, suggesting immune gene repression by wild-type ATF3. In accord, more immune cells were present in the lesion area of ATF3-deficient mice. Overall, we identified ATF3 as a new TF-mediating TBI-associated CNS inflammatory responses.


Assuntos
Fator 3 Ativador da Transcrição/imunologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Inflamação/imunologia , Inflamação/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes
5.
Exp Neurol ; 302: 34-45, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29306704

RESUMO

Ethanol intoxication is a risk factor for traumatic brain injury (TBI) but clinical evidence suggests that it may actually improve the prognosis of intoxicated TBI patients. We have employed a closed, weight-drop TBI model of different severity (2cm or 3cm falling height), preceded (-30min) or followed (+20min) by ethanol administration (5g/Kg). This protocol allows us to study the interaction of binge ethanol intoxication in TBI, monitoring behavioral changes, histological responses and the transcriptional regulation of a series of activity-regulated genes (immediate early genes, IEGs). We demonstrate that ethanol pretreatment before moderate TBI (2cm) significantly reduces neurological impairment and accelerates recovery. In addition, better preservation of neuronal numbers and cFos+cells was observed 7days after TBI. At transcriptional level, ethanol reduced the upregulation of a subset of IEGs encoding for transcription factors such as Atf3, c-Fos, FosB, Egr1, Egr3 and Npas4 but did not affect the upregulation of others (e.g. Gadd45b and Gadd45c). While a subset of IEGs encoding for effector proteins (such as Bdnf, InhbA and Dusp5) were downregulated by ethanol, others (such as Il-6) were unaffected. Notably, the majority of genes were sensitive to ethanol only when administered before TBI and not afterwards (the exceptions being c-Fos, Egr1 and Dusp5). Furthermore, while severe TBI (3cm) induced a qualitatively similar (but quantitatively larger) transcriptional response to moderate TBI, it was no longer sensitive to ethanol pretreatment. Thus, we have shown that a subset of the TBI-induced transcriptional responses were sensitive to ethanol intoxication at the instance of trauma (ultimately resulting in beneficial outcomes) and that the effect of ethanol was restricted to a certain time window (pre TBI treatment) and to TBI severity (moderate). This information could be critical for the translational value of ethanol in TBI and for the design of clinical studies aimed at disentangling the role of ethanol intoxication in TBI.


Assuntos
Intoxicação Alcoólica/prevenção & controle , Lesões Encefálicas Traumáticas/induzido quimicamente , Lesões Encefálicas Traumáticas/prevenção & controle , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Fatores de Transcrição/metabolismo , Análise de Variância , Animais , Depressores do Sistema Nervoso Central/sangue , Relação Dose-Resposta a Droga , Etanol/sangue , Comportamento Exploratório/efeitos dos fármacos , Masculino , Camundongos , Exame Neurológico , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
6.
Mol Neurobiol ; 54(10): 8242-8262, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27914009

RESUMO

Stress experience modulates behavior, metabolism, and energy expenditure of organisms. One molecular hallmark of an acute stress response is a rapid induction of immediate early genes (IEGs) such as c-Fos and Egr family members. IEG transcription in neurons is mediated by the neuronal activity-driven gene regulator serum response factor (SRF). We show a first role of SRF in immediate and long-lasting acute restraint stress (AS) responses. For this, we employed a standardized mouse phenotyping protocol at the German Mouse Clinic (GMC) including behavioral, metabolic, and cardiologic tests as well as gene expression profiling to analyze the consequences of forebrain-specific SRF deletion in mice exposed to AS. Adult mice with an SRF deletion in glutamatergic neurons (Srf; CaMKIIa-CreERT2 ) showed hyperactivity, decreased anxiety, and impaired working memory. In response to restraint AS, instant stress reactivity including locomotor behavior and corticosterone induction was impaired in Srf mutant mice. Interestingly, even several weeks after previous AS exposure, SRF-deficient mice showed long-lasting AS-associated changes including altered locomotion, metabolism, energy expenditure, and cardiovascular changes. This suggests a requirement of SRF for mediating long-term stress coping mechanisms in wild-type mice. SRF ablation decreased AS-mediated IEG induction and activity of the actin severing protein cofilin. In summary, our data suggest an SRF function in immediate AS reactions and long-term post-stress-associated coping mechanisms.


Assuntos
Adaptação Psicológica/fisiologia , Genes Precoces/fisiologia , Prosencéfalo/metabolismo , Fator de Resposta Sérica/deficiência , Estresse Psicológico/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prosencéfalo/patologia , Fator de Resposta Sérica/genética , Estresse Psicológico/genética , Estresse Psicológico/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa