RESUMO
To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-µm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.
Assuntos
Fatores de Despolimerização de Actina , Actomiosina , Fatores de Despolimerização de Actina/metabolismo , Movimento Celular/fisiologia , Actomiosina/metabolismo , Citocinese , Cofilina 1/metabolismo , Matriz Extracelular/metabolismo , Células Dendríticas/metabolismoRESUMO
Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes1. Yet both activation and inhibition of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in combination with glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) activation have resulted in similar clinical outcomes, as demonstrated by the GIPR-GLP-1R co-agonist tirzepatide2 and AMG-133 (ref. 3) combining GIPR antagonism with GLP-1R agonism. This underlines the importance of a better understanding of the GIP system. Here we show the necessity of ß-arrestin recruitment for GIPR function, by combining in vitro pharmacological characterization of 47 GIPR variants with burden testing of clinical phenotypes and in vivo studies. Burden testing of variants with distinct ligand-binding capacity, Gs activation (cyclic adenosine monophosphate production) and ß-arrestin 2 recruitment and internalization shows that unlike variants solely impaired in Gs signalling, variants impaired in both Gs and ß-arrestin 2 recruitment contribute to lower adiposity-related traits. Endosomal Gs-mediated signalling of the variants shows a ß-arrestin dependency and genetic ablation of ß-arrestin 2 impairs cyclic adenosine monophosphate production and decreases GIP efficacy on glucose control in male mice. This study highlights a crucial impact of ß-arrestins in regulating GIPR signalling and overall preservation of biological activity that may facilitate new developments in therapeutic targeting of the GIPR system.
Assuntos
Fenótipo , Receptores dos Hormônios Gastrointestinais , beta-Arrestinas , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Animais , Camundongos , Humanos , beta-Arrestinas/metabolismo , Variação Genética , beta-Arrestina 2/metabolismo , beta-Arrestina 2/genética , Transdução de Sinais , Polipeptídeo Inibidor Gástrico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Obesidade/metabolismo , Obesidade/genética , Masculino , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genéticaRESUMO
Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest subclass of the GPCR superfamily. Although canonical GPCRs are explored pharmacologically as drug targets, no clinically approved drugs target the aGPCR family so far. The aGPCR GPR56/ADGRG1 stands out as an especially promising target, given its direct link to the monogenetic disease bilateral frontoparietal polymicrogyria and implications in cancers. Key to understanding GPCR pharmacology has been mapping out intracellular signalling activity. Detection of GPCR signalling in the Gαs /Gαi /Gαq G protein pathways is feasible with second messenger detection systems. However, in the case of Gα12/13 -coupled receptors, like GPR56, signalling detection is more challenging due to the lack of direct second messenger generation. To overcome this challenge, we engineered a Gαq chimera to translate Gα12/13 signalling. We show the ability of the chimeric GαΔ6q12myr and GαΔ6q13myr to translate basal Gα12/13 signalling of GPR56 to a Gαq readout in transcription factor luciferase reporter systems and show that the established peptide ligands (P7 and P19) function to enhance this signal. We further demonstrate the ability to directly influence the generation of second messengers in inositol-3-phosphate assays. In the future, these chimeric G proteins could facilitate basic functional studies, drug screenings and deorphanization of other aGPCRs.