RESUMO
As a facultative intracellular pathogen, Salmonella enterica serovar Typhimurium is one of the leading causes of food-borne diseases in humans. With the ingestion of fecal contaminated food or water, S. Typhimurium reaches the intestine. Here, the pathogen efficiently invades intestinal epithelial cells of the mucosal epithelium by the use of multiple virulence factors. Recently, chitinases have been described as emerging virulence factors of S. Typhimurium that contribute to the attachment and invasion of the intestinal epithelium, prevent immune activation, and modulate the host glycome. Here we find that the deletion of chiA leads to diminished adhesion and invasion of polarized intestinal epithelial cells (IEC) compared to wild-type S. Typhimurium. Interestingly, no apparent impact on interaction was detected when using non-polarized IEC or HeLa epithelial cells. In concordance, we demonstrate that chiA gene and ChiA protein expression was solely induced when bacteria gain contact with polarized IEC. The induction of chiA transcripts needs the specific activity of transcriptional regulator ChiR, which is co-localized with chiA in the chitinase operon. Moreover, we established that after chiA is induced, a major portion of the bacterial population expresses chiA, analyzed by flow cytometry. Once expressed, we found ChiA in the bacterial supernatants using Western blot analyses. ChiA secretion was completely abolished when accessory genes within the chitinase operon encoding for a holin and a peptidoglycan hydrolase were deleted. Holins, peptidoglycan hydrolases, and large extracellular enzymes in close proximity have been described as components of the bacterial holin/peptidoglycan hydrolase-dependent protein secretion system or Type 10 Secretion System. Overall, our results confirm that chitinase A is an important virulence factor, tightly regulated by ChiR, that promotes adhesion and invasion upon contact with polarized IEC and is likely secreted by a Type 10 Secretion System (T10SS).
Assuntos
Quitinases , Fatores de Virulência , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Salmonella typhimurium , Quitinases/genética , Quitinases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sorogrupo , Mucosa Intestinal/microbiologia , Sistemas de Secreção Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Lipopolysaccharide inner core heptose metabolites, including ADP-heptose, play a substantial role in the activation of cell-autonomous innate immune responses in eukaryotic cells, via the ALPK1-TIFA signaling pathway, as demonstrated for various pathogenic bacteria. The important role of LPS heptose metabolites during Helicobacter pylori infection of the human gastric niche has been demonstrated for gastric epithelial cells and macrophages, while the role of heptose metabolites on human neutrophils has not been investigated. In this study, we aimed to gain a better understanding of the activation potential of bacterial heptose metabolites for human neutrophil cells. To do so, we used pure ADP-heptose and, as a bacterial model, H. pylori, which can transport heptose metabolites into the human host cell via the Cag Type 4 Secretion System (CagT4SS). Main questions were how bacterial heptose metabolites impact on the pro-inflammatory activation, alone and in the bacterial context, and how they influence maturation of human neutrophils. Results of the present study demonstrated that neutrophils respond with high sensitivity to pure heptose metabolites, and that global regulation networks and neutrophil maturation are influenced by heptose exposure. Furthermore, activation of human neutrophils by live H. pylori is strongly impacted by the presence of LPS heptose metabolites and the functionality of its CagT4SS. Similar activities were determined in cell culture neutrophils of different maturation states and in human primary neutrophils. In conclusion, we demonstrated that specific heptose metabolites or bacteria producing heptoses exhibit a strong activity on cell-autonomous innate responses of human neutrophils.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Heptoses , Neutrófilos , Humanos , Infecções por Helicobacter/microbiologia , Heptoses/metabolismo , Lipopolissacarídeos/metabolismo , Neutrófilos/metabolismoRESUMO
[This corrects the article DOI: 10.3389/fimmu.2022.828626.].
RESUMO
Helicobacter pylori is an intriguing obligate host-associated human pathogen with a specific host interaction biology, which has been shaped by thousands of years of host-pathogen coevolution. Molecular mechanisms of interaction of H. pylori with the local immune cells in the human system are less well defined than epithelial cell interactions, although various myeloid cells, including neutrophils and other phagocytes, are locally present or attracted to the sites of infection and interact with H. pylori. We have recently addressed the question of novel bacterial innate immune stimuli, including bacterial cell envelope metabolites, that can activate and modulate cell responses via the H. pylori Cag type IV secretion system. This review article gives an overview of what is currently known about the interaction modes and mechanisms of H. pylori with diverse human cell types, with a focus on bacterial metabolites and cells of the myeloid lineage including phagocytic and antigen-presenting cells.
Assuntos
Proteínas de Bactérias , Helicobacter pylori , Humanos , Proteínas de Bactérias/metabolismo , Neutrófilos/metabolismo , Imunidade Inata , Células EpiteliaisRESUMO
Heptose metabolites including ADP-d-glycero-ß-d-manno-heptose (ADP-heptose) are involved in bacterial lipopolysaccharide and cell envelope biosynthesis. Recently, heptoses were also identified to have potent proinflammatory activity on human cells as novel microbe-associated molecular patterns. The gastric pathogenic bacterium Helicobacter pylori produces heptose metabolites, which it transports into human cells through its Cag type 4 secretion system. Using H. pylori as a model, we have addressed the question of how proinflammatory ADP-heptose biosynthesis can be regulated by bacteria. We have characterized the interstrain variability and regulation of heptose biosynthesis genes and the modulation of heptose metabolite production by H. pylori, which impact cell-autonomous proinflammatory human cell activation. HldE, a central enzyme of heptose metabolite biosynthesis, showed strong sequence variability between strains and was also variably expressed between strains. Amounts of gene transcripts in the hldE gene cluster displayed intrastrain and interstrain differences, were modulated by host cell contact and the presence of the cag pathogenicity island, and were affected by carbon starvation regulator A (CsrA). We reconstituted four steps of the H. pylori lipopolysaccharide (LPS) heptose biosynthetic pathway in vitro using recombinant purified GmhA, HldE, and GmhB proteins. On the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the structures of major reaction products were identified as ß-d-ADP-heptose and ß-heptose-1-monophosphate. A proinflammatory heptose-monophosphate variant was also identified for the first time as a novel cell-active product in H. pylori bacteria. Separate purified HldE subdomains and variant HldE allowed us to uncover additional strain variation in generating heptose metabolites. IMPORTANCE Bacterial heptose metabolites, intermediates of lipopolysaccharide (LPS) biosynthesis, are novel microbe-associated molecular patterns (MAMPs) that activate proinflammatory signaling. In the gastric pathogen Helicobacter pylori, heptoses are transferred into host cells by the Cag type IV secretion system, which is also involved in carcinogenesis. Little is known about how H. pylori, which is highly strain variable, regulates heptose biosynthesis and downstream host cell activation. We report here that the regulation of proinflammatory heptose production by H. pylori is strain specific. Heptose gene cluster activity is modulated by the presence of an active cag pathogenicity island (cagPAI), contact with human cells, and the carbon starvation regulator A. Reconstitution with purified biosynthesis enzymes and purified bacterial lysates allowed us to biochemically characterize heptose pathway products, identifying a heptose-monophosphate variant as a novel proinflammatory metabolite. These findings emphasize that the bacteria use heptose biosynthesis to fine-tune inflammation and also highlight opportunities to mine the heptose biosynthesis pathway as a potential therapeutic target against infection, inflammation, and cancer.
Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Lipopolissacarídeos/metabolismo , Heptoses/química , Heptoses/metabolismo , Inflamação , Imunidade Inata , Proteínas de Bactérias/metabolismoRESUMO
Staphylococcus aureus is one of the clinically most relevant pathogens causing infections. Humans are often exposed to S. aureus. In approximately one-third of the healthy population it can be found on the skin either for long or short periods as colonizing "commensals", without inducing infections or an inflammatory immune response. While tolerating S. aureus seems to be limited to certain individuals and time periods in most cases, Staphylococcus epidermidis is tolerated permanently on the skin of almost all individuals without activating overwhelming skin inflammation. To investigate this, we co-cultured a keratinocyte cell line (HaCaT) with viable S. aureus or S. epidermidis to study the differences in the immune activation. S. aureus activated keratinocytes depicted by a profound IL-6 and IL-8 response, whereas S. epidermidis did not. Our data indicate that internalization of S. aureus and the subsequent intracellular sensing of bacterial nucleic acid may be essential for initiating inflammatory response in keratinocytes. Internalized dsRNA activates IL-6 and IL-8 release, but not TNF-α or IFNs by human keratinocytes. This is a non-specific effect of dsRNA, which can be induced using Poly(I:C), as well as RNA from S. aureus and S. epidermidis. However, only viable S. aureus were able to induce this response as these bacteria and not S. epidermidis were actively internalized by HaCaT. The stimulatory effect of S. aureus seems to be independent of the TLR3, -7 and -8 pathways.
Assuntos
Ácidos Nucleicos , Infecções Estafilocócicas , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos , Ácidos Nucleicos/metabolismo , Staphylococcus aureus , Staphylococcus epidermidisRESUMO
The human gastric pathogen Helicobacter pylori activates human epithelial cells by a particular combination of mechanisms, including NOD1 and ALPK1-TIFA activation. These mechanisms are characterized by a strong participation of the bacterial cag pathogenicity island, which forms a type IV secretion system (CagT4SS) that enables the bacteria to transport proteins and diverse bacterial metabolites, including DNA, glycans, and cell wall components, into human host cells. Building on previous findings, we sought to determine the contribution of lipopolysaccharide inner core heptose metabolites (ADP-heptose) in the activation of human phagocytic cells by H. pylori. Using human monocyte/macrophage-like Thp-1 cells and human primary monocytes and macrophages, we were able to determine that a substantial part of early phagocytic cell activation, including NF-κB activation and IL-8 production, by live H. pylori is triggered by bacterial heptose metabolites. This effect was very pronounced in Thp-1 cells exposed to bacterial purified lysates or pure ADP-heptose, in the absence of other bacterial MAMPs, and was significantly reduced upon TIFA knock-down. Pure ADP-heptose on its own was able to strongly activate Thp-1 cells and human primary monocytes/macrophages. Comprehensive transcriptome analysis of Thp-1 cells co-incubated with live H. pylori or pure ADP-heptose confirmed a signature of ADP-heptose-dependent transcript activation in monocyte/macrophages. Bacterial enzyme-treated lysates (ETL) and pure ADP-heptose-dependent activation differentiated monocytes into macrophages of predominantly M1 type. In Thp-1 cells, the active CagT4SS was less required for the heptose-induced proinflammatory response than in epithelial cells, while active heptose biosynthesis or pure ADP-heptose was required and sufficient for their early innate response and NF-κB activation. The present data suggest that early activation and maturation of incoming and resident phagocytic cells (monocytes, macrophages) in the H. pylori-colonized stomach strongly depend on bacterial LPS inner core heptose metabolites, also with a significant contribution of an active CagT4SS.
Assuntos
Ilhas Genômicas/fisiologia , Helicobacter pylori/metabolismo , Heptoses/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vias Biossintéticas , Helicobacter pylori/patogenicidade , Humanos , Imunidade Inata , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Transcriptoma , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismoRESUMO
The persistence of Helicobacter pylori in the human gastric mucosa implies that the immune response fails to clear the infection. We found that H. pylori compromises the antigen presentation ability of macrophages, because of the decline of the presenting molecules HLA-II. Here, we reveal that the main bacterial factor responsible for this effect is ADP-heptose, an intermediate metabolite in the biosynthetic pathway of lipopolysaccharide (LPS) that elicits a pro-inflammatory response in gastric epithelial cells. In macrophages, it upregulates the expression of miR146b which, in turn, would downmodulate CIITA, the master regulator for HLA-II genes. Hence, H. pylori, utilizing ADP-heptose, exploits a specific arm of macrophage response to establish its survival niche in the face of the immune defense elicited in the gastric mucosa.