Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 37(4): e5081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38113906

RESUMO

Very short chemical exchange saturation transfer (CEST) pulses are beneficial in cardiac continuous wave (cw) CEST MRI, especially in small animals because of their rapid heartbeat; however, they result in signal modulations caused by Rabi oscillations. Therefore, we implemented two different filter techniques, DOwnsampling by SEparation of CEST spectrum into two parts (DOSE) and time domain (TD)-based filtering, to correct for these signal corruptions, allowing a reliable quantification of glucose-weighted CEST (glucoCEST) MRI contrast. In our study, cw CEST measurements were performed on a 9.4-T small animal BioSpec system using CEST pulses in the range of 10 to 200 ms. Experimental dependencies of Rabi oscillations on key MRI parameters were validated by Bloch-McConnell (BM) simulations. Filter efficiency was explored in a glucose concentration series as well as in the myocardium of healthy mice (n = 8), and glucoCEST contrast was subsequently quantified. The experimental results showed that the impact of Rabi oscillations on CEST spectra increased with decreasing CEST pulse length, optimized B0 homogeneity, and shorter T2 relaxation time, in accordance with results from BM simulations. Both investigated filter techniques reduced these signal modulations significantly, with DOSE filtering preserving the amplitude and TD filtering the spectral information of CEST data more accurately. Upon filter application, a significant decrease in glucoCEST contrast in the myocardium of healthy mice was observed after glucose infusion (pTD = 0.0079, pDOSE = 0.0044). To conclude, this study offers comprehensive experimental insights into Rabi oscillations within CEST MRI data along with methodological considerations that could be further advanced into a robust and precise cardiac cw CEST protocol by integrating DOSE and TD filtering into the standard CEST analysis pipeline.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Camundongos , Animais , Simulação por Computador , Imageamento por Ressonância Magnética/métodos , Concentração de Íons de Hidrogênio , Glucose
3.
Front Neurol ; 15: 1355862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529038

RESUMO

Introduction: Genetic Absence Epilepsy Rats from Strasbourg (GAERS) represent a model of genetic generalized epilepsy. The present longitudinal study in GAERS and age-matched non-epileptic controls (NEC) aimed to characterize the epileptic brain network using two functional measures, resting state-functional magnetic resonance imaging (rs-fMRI) and manganese-enhanced MRI (MEMRI) combined with morphometry, and to investigate potential brain network alterations, following long-term seizure activity. Methods: Repeated rs-fMRI measurements at 9.4 T between 3 and 8 months of age were combined with MEMRI at the final time point of the study. We used graph theory analysis to infer community structure and global and local network parameters from rs-fMRI data and compared them to brain region-wise manganese accumulation patterns and deformation-based morphometry (DBM). Results: Functional connectivity (FC) was generally higher in GAERS when compared to NEC. Global network parameters and community structure were similar in NEC and GAERS, suggesting efficiently functioning networks in both strains. No progressive FC changes were observed in epileptic animals. Network-based statistics (NBS) revealed stronger FC within the cortical community, including regions of association and sensorimotor cortex, and with basal ganglia and limbic regions in GAERS, irrespective of age. Higher manganese accumulation in GAERS than in NEC was observed at 8 months of age, consistent with higher overall rs-FC, particularly in sensorimotor cortex and association cortex regions. Functional measures showed less similarity in subcortical regions. Whole brain volumes of 8 months-old GAERS were higher when compared to age-matched NEC, and DBM revealed increased volumes of several association and sensorimotor cortex regions and of the thalamus. Discussion: rs-fMRI, MEMRI, and volumetric data collectively suggest the significance of cortical networks in GAERS, which correlates with an increased fronto-central connectivity in childhood absence epilepsy (CAE). Our findings also verify involvement of basal ganglia and limbic regions. Epilepsy-related network alterations are already present in juvenile animals. Consequently, this early condition seems to play a greater role in dynamic brain function than chronic absence seizures.

4.
Biomedicines ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790949

RESUMO

Desmoglein-2 mutations are detected in 5-10% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). Endurance training accelerates the development of the ARVC phenotype, leading to earlier arrhythmic events. Homozygous Dsg2 mutant mice develop a severe ARVC-like phenotype. The phenotype of heterozygous mutant (Dsg2mt/wt) or haploinsufficient (Dsg20/wt) mice is still not well understood. To assess the effects of age and endurance swim training, we studied cardiac morphology and function in sedentary one-year-old Dsg2mt/wt and Dsg20/wt mice and in young Dsg2mt/wt mice exposed to endurance swim training. Cardiac structure was only occasionally affected in aged Dsg20/wt and Dsg2mt/wt mice manifesting as small fibrotic foci and displacement of Connexin 43. Endurance swim training increased the right ventricular (RV) diameter and decreased RV function in Dsg2mt/wt mice but not in wild types. Dsg2mt/wt hearts showed increased ventricular activation times and pacing-induced ventricular arrhythmia without obvious fibrosis or inflammation. Preload-reducing therapy during training prevented RV enlargement and alleviated the electrophysiological phenotype. Taken together, endurance swim training induced features of ARVC in young adult Dsg2mt/wt mice. Prolonged ventricular activation times in the hearts of trained Dsg2mt/wt mice are therefore a potential mechanism for increased arrhythmia risk. Preload-reducing therapy prevented training-induced ARVC phenotype pointing to beneficial treatment options in human patients.

5.
Bioact Mater ; 39: 406-426, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38855059

RESUMO

Endothelin-1/endothelin A receptor (ET-1/ETAR) pathway plays an important role in the progression of liver fibrosis by activating hepatic stellate cells (HSCs) - a key cell type involved in the pathogenesis of liver fibrosis. Inactivating HSCs by blocking the ET-1/ETAR pathway using a selective ETAR antagonist (ERA) represents a promising therapeutic approach for liver fibrosis. Unfortunately, small-molecule ERAs possess limited clinical potential due to poor bioavailability, short half-life, and rapid renal clearance. To improve the clinical applicability, we conjugated ERA to superparamagnetic iron-oxide nanoparticles (SPIONs) and investigated the therapeutic efficacy of ERA and ERA-SPIONs in vitro and in vivo and analyzed liver uptake by in vivo and ex vivo magnetic resonance imaging (MRI), HSCs-specific localization, and ET-1/ETAR-pathway antagonism in vivo. In murine and human liver fibrosis/cirrhosis, we observed overexpression of ET-1 and ETAR that correlated with HSC activation, and HSC-specific localization of ETAR. ERA and successfully synthesized ERA-SPIONs demonstrated significant attenuation in TGFß-induced HSC activation, ECM production, migration, and contractility. In an acute CCl4-induced liver fibrosis mouse model, ERA-SPIONs exhibited higher liver uptake, HSC-specific localization, and ET-1/ETAR pathway antagonism. This resulted in significantly reduced liver-to-body weight ratio, plasma ALT levels, and α-SMA and collagen-I expression, indicating attenuation of liver fibrosis. In conclusion, our study demonstrates that the delivery of ERA using SPIONs enhances the therapeutic efficacy of ERA in vivo. This approach holds promise as a theranostic strategy for the MRI-based diagnosis and treatment of liver fibrosis.

6.
Metallomics ; 16(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39085040

RESUMO

A referencing strategy based on the element P is presented to compensate for cryosectioning tissue artifacts in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data. The study examines how the gadolinium-based contrast agent Gadofosveset is distributed in murine cancer tissue, and illustrates how referenced images can compensate for tissue artifacts like folds, overlaps, and density variations. Compared to non-referenced images that provide information on the absolute distribution of the analyte, referenced images allow for the representation of the analyte distribution relative to the amount of material introduced into the instrument, which in this case is correlated to the P signal. Tissue artifacts were corrected in referenced images for both Gadofosveset and endogenous elements, such as Fe and Zn. Additionally, the referencing approach provides valuable information on the Gd uptake relative to the tissue density in necrotic compared to vital tumor areas, which is not obtained from in vivo magnetic resonance imaging (MRI) data. However, validation of in vivo MRI and ex vivo LA-ICP-MS methods was possible by establishing a mean ratio of necrotic to vital tumor areas in the T1-weighted image post Gadofosveset injection and the non-referenced LA-ICP-MS image of Gd. In summary, P-based correction of LA-ICP-MS imaging data allows for a more accurate spatial representation of certain elements, including endogenous and exogenous elements such as injected contrast agents.


Assuntos
Artefatos , Gadolínio , Espectrometria de Massas , Animais , Camundongos , Espectrometria de Massas/métodos , Gadolínio/química , Terapia a Laser/métodos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Feminino , Compostos Organometálicos/química
7.
Nat Rev Clin Oncol ; 21(6): 428-448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641651

RESUMO

Our understanding of tumour biology has evolved over the past decades and cancer is now viewed as a complex ecosystem with interactions between various cellular and non-cellular components within the tumour microenvironment (TME) at multiple scales. However, morphological imaging remains the mainstay of tumour staging and assessment of response to therapy, and the characterization of the TME with non-invasive imaging has not yet entered routine clinical practice. By combining multiple MRI sequences, each providing different but complementary information about the TME, multiparametric MRI (mpMRI) enables non-invasive assessment of molecular and cellular features within the TME, including their spatial and temporal heterogeneity. With an increasing number of advanced MRI techniques bridging the gap between preclinical and clinical applications, mpMRI could ultimately guide the selection of treatment approaches, precisely tailored to each individual patient, tumour and therapeutic modality. In this Review, we describe the evolving role of mpMRI in the non-invasive characterization of the TME, outline its applications for cancer detection, staging and assessment of response to therapy, and discuss considerations and challenges for its use in future medical applications, including personalized integrated diagnostics.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias , Microambiente Tumoral , Humanos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa