Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Opt Express ; 28(19): 27473-27475, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988040

RESUMO

Corrections for equations in our recently published paper [Opt. Express27, A1350 (2019)] are presented.

2.
Glob Chang Biol ; 26(4): 2149-2160, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32048410

RESUMO

Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present-day ecosystems is limited. Here we use data from three independent large-scale reef monitoring programs to assess coral reef responses associated with changes in mean aragonite saturation state (Ωar ) in the Great Barrier Reef World Heritage Area (GBR). Spatial declines in mean Ωar are associated with monotonic declines in crustose coralline algae (up to 3.1-fold) and coral juvenile densities (1.3-fold), while non-calcifying macroalgae greatly increase (up to 3.2-fold), additionally to their natural changes across and along the GBR. These three key groups of organisms are important proxies for coral reef health. Our data suggest a tipping point at Ωar 3.5-3.6 for these coral reef health indicators. Suspended sediments acted as an additive stressor. The latter suggests that effective water quality management to reduce suspended sediments might locally and temporarily reduce the pressure from ocean acidification on these organisms.

3.
Opt Express ; 27(20): A1350-A1371, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684492

RESUMO

We demonstrate a simple, spectrally resolved ocean color remote sensing model to estimate benthic photosynthetically active radiation (bPAR) for the waters of the Great Barrier Reef (GBR), Australia. For coastal marine environments and coral reefs, the underwater light field is critical to ecosystem health, but data on bPAR rarely exist at ecologically relevant spatio-temporal scales. The bPAR model presented here is based on Lambert-Beer's Law and uses: (i) sea surface values of the downwelling solar irradiance, Es(λ); (ii) high-resolution seafloor bathymetry data; and (iii) spectral estimates of the diffuse attenuation coefficient, Kd(λ), calculated from GBR-specific spectral inherent optical properties (IOPs). We first derive estimates of instantaneous bPAR. Assuming clear skies, these instantaneous values were then used to obtain daily integrated benthic PAR values. Matchup comparisons between concurrent satellite-derived bPAR and in situ values recorded at four optically varying test sites indicated strong agreement, small bias, and low mean absolute error. Overall, the matchup results suggest that our benthic irradiance model was robust to spatial variation in optical properties, typical of complex shallow coastal waters such as the GBR. We demonstrated the bPAR model for a small test region in the central GBR, with the results revealing strong patterns of temporal variability. The model will provide baseline datasets to assess changes in bPAR and its external drivers and may form the basis for a future GBR water-quality index. This model may also be applicable to other coastal waters for which spectral IOP and high-resolution bathymetry data exist.

4.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904144

RESUMO

The future of coral reefs under increasing CO2 depends on their capacity to recover from disturbances. To predict the recovery potential of coral communities that are fully acclimatized to elevated CO2, we compared the relative success of coral recruitment and later life stages at two volcanic CO2 seeps and adjacent control sites in Papua New Guinea. Our field experiments showed that the effects of ocean acidification (OA) on coral recruitment rates were up to an order of magnitude greater than the effects on the survival and growth of established corals. Settlement rates, recruit and juvenile densities were best predicted by the presence of crustose coralline algae, as opposed to the direct effects of seawater CO2 Offspring from high CO2 acclimatized parents had similarly impaired settlement rates as offspring from control parents. For most coral taxa, field data showed no evidence of cumulative and compounding detrimental effects of high CO2 on successive life stages, and three taxa showed improved adult performance at high CO2 that compensated for their low recruitment rates. Our data suggest that severely declining capacity for reefs to recover, due to altered settlement substrata and reduced coral recruitment, is likely to become a dominant mechanism of how OA will alter coral reefs.


Assuntos
Antozoários/fisiologia , Dióxido de Carbono/análise , Mudança Climática , Recifes de Corais , Água do Mar/química , Aclimatação , Ácidos , Animais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Papua Nova Guiné
5.
Proc Biol Sci ; 283(1842)2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852802

RESUMO

Ocean acidification (OA) impacts the physiology of diverse marine taxa; among them corals that create complex reef framework structures. Biological processes operating on coral reef frameworks remain largely unknown from naturally high-carbon-dioxide (CO2) ecosystems. For the first time, we independently quantified the response of multiple functional groups instrumental in the construction and erosion of these frameworks (accretion, macroboring, microboring, and grazing) along natural OA gradients. We deployed blocks of dead coral skeleton for roughly 2 years at two reefs in Papua New Guinea, each experiencing volcanically enriched CO2, and employed high-resolution micro-computed tomography (micro-CT) to create three-dimensional models of changing skeletal structure. OA conditions were correlated with decreased calcification and increased macroboring, primarily by annelids, representing a group of bioeroders not previously known to respond to OA. Incubation of these blocks, using the alkalinity anomaly methodology, revealed a switch from net calcification to net dissolution at a pH of roughly 7.8, within Intergovernmental Panel on Climate Change's (IPCC) predictions for global ocean waters by the end of the century. Together these data represent the first comprehensive experimental study of bioerosion and calcification from a naturally high-CO2 reef ecosystem, where the processes of accelerated erosion and depressed calcification have combined to alter the permanence of this essential framework habitat.


Assuntos
Calcificação Fisiológica , Dióxido de Carbono/química , Recifes de Corais , Água do Mar/química , Animais , Antozoários/fisiologia , Mudança Climática , Concentração de Íons de Hidrogênio , Papua Nova Guiné , Solubilidade , Microtomografia por Raio-X
6.
Glob Chang Biol ; 22(7): 2451-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26762613

RESUMO

Rising atmospheric CO2 concentrations will significantly reduce ocean pH during the 21st century (ocean acidification, OA). This may hamper calcification in marine organisms such as corals and echinoderms, as shown in many laboratory-based experiments. Sea urchins are considered highly vulnerable to OA. We studied an Echinometra species on natural volcanic CO2 vents in Papua New Guinea, where they are CO2 -acclimatized and also subjected to secondary ecological changes from elevated CO2 . Near the vent site, the urchins experienced large daily variations in pH (>1 unit) and pCO2 (>2000 ppm) and average pH values (pHT 7.73) much below those expected under the most pessimistic future emission scenarios. Growth was measured over a 17-month period using tetracycline tagging of the calcareous feeding lanterns. Average-sized urchins grew more than twice as fast at the vent compared with those at an adjacent control site and assumed larger sizes at the vent compared to the control site and two other sites at another reef near-by. A small reduction in gonad weight was detected at the vents, but no differences in mortality, respiration, or degree of test calcification were detected between urchins from vent and control populations. Thus, urchins did not only persist but actually 'thrived' under extreme CO2 conditions. We suggest an ecological basis for this response: Increased algal productivity under increased pCO2 provided more food at the vent, resulting in higher growth rates. The wider implication of our observation is that laboratory studies on non-acclimatized specimens, which typically do not consider ecological changes, can lead to erroneous conclusions on responses to global change.


Assuntos
Aclimatação , Dióxido de Carbono/química , Ouriços-do-Mar/fisiologia , Água do Mar/química , Animais , Papua Nova Guiné
7.
Ecology ; 96(1): 3-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236884

RESUMO

Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification'and the ecological changes it portends.


Assuntos
Mudança Climática , Ecologia , Ecossistema , Oceanos e Mares , Água do Mar/química , Aclimatação , Animais , Modelos Biológicos
8.
Proc Natl Acad Sci U S A ; 109(44): 17995-9, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23027961

RESUMO

The world's coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world's most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), we show a major decline in coral cover from 28.0% to 13.8% (0.53% y(-1)), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%, and 10% of the respective estimated losses, amounting to 3.38% y(-1) mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85% y(-1), demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y(-1), despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improving water quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase.


Assuntos
Antozoários , Animais , Austrália
9.
Proc Natl Acad Sci U S A ; 109(24): E1558-67, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22615403

RESUMO

We investigated the mechanisms leading to rapid death of corals when exposed to runoff and resuspended sediments, postulating that the killing was microbially mediated. Microsensor measurements were conducted in mesocosm experiments and in naturally accumulated sediment on corals. In organic-rich, but not in organic-poor sediment, pH and oxygen started to decrease as soon as the sediment accumulated on the coral. Organic-rich sediments caused tissue degradation within 1 d, whereas organic-poor sediments had no effect after 6 d. In the harmful organic-rich sediment, hydrogen sulfide concentrations were low initially but increased progressively because of the degradation of coral mucus and dead tissue. Dark incubations of corals showed that separate exposures to darkness, anoxia, and low pH did not cause mortality within 4 d. However, the combination of anoxia and low pH led to colony death within 24 h. When hydrogen sulfide was added after 12 h of anoxia and low pH, colonies died after an additional 3 h. We suggest that sedimentation kills corals through microbial processes triggered by the organic matter in the sediments, namely respiration and presumably fermentation and desulfurylation of products from tissue degradation. First, increased microbial respiration results in reduced O(2) and pH, initiating tissue degradation. Subsequently, the hydrogen sulfide formed by bacterial decomposition of coral tissue and mucus diffuses to the neighboring tissues, accelerating the spread of colony mortality. Our data suggest that the organic enrichment of coastal sediments is a key process in the degradation of coral reefs exposed to terrestrial runoff.


Assuntos
Antozoários , Sedimentos Geológicos , Animais , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Eletroforese em Gel de Poliacrilamida , Sulfeto de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Oxigênio/análise , RNA Ribossômico 16S/genética
10.
Microbiome ; 12(1): 75, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627822

RESUMO

BACKGROUND: Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. RESULTS: We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. CONCLUSIONS: We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem changed. Video Abstract.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Água do Mar , Antozoários/fisiologia
11.
PLoS One ; 18(1): e0279699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662876

RESUMO

Macroalgae are an important component of coral reef ecosystems. We identified spatial patterns, environmental drivers and long-term trends of total cover of upright fleshy and calcareous coral reef inhabiting macroalgae in the Great Barrier Reef. The spatial study comprised of one-off surveys of 1257 sites (latitude 11-24°S, coastal to offshore, 0-18 m depth), while the temporal trends analysis was based on 26 years of long-term monitoring data from 93 reefs. Environmental predictors were obtained from in situ data and from the coupled hydrodynamic-biochemical model eReefs. Macroalgae dominated the benthos (≥50% cover) on at least one site of 40.4% of surveyed inshore reefs. Spatially, macroalgal cover increased steeply towards the coast, with latitude away from the equator, and towards shallow (≤3 m) depth. Environmental conditions associated with macroalgal dominance were: high tidal range, wave exposure and irradiance, and low aragonite saturation state, Secchi depth, total alkalinity and temperature. Evidence of space competition between macroalgal cover and hard coral cover was restricted to shallow inshore sites. Temporally, macroalgal cover on inshore and mid-shelf reefs showed some fluctuations, but unlike hard corals they showed no systematic trends. Our extensive empirical data may serve to parameterize ecosystem models, and to refine reef condition indices based on macroalgal data for Pacific coral reefs.


Assuntos
Antozoários , Alga Marinha , Animais , Recifes de Corais , Ecossistema , Temperatura
12.
Glob Chang Biol ; 18(9): 2781-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501056

RESUMO

Changes in the seawater carbonate chemistry (ocean acidification) from increasing atmospheric carbon dioxide (CO2 ) concentrations negatively affect many marine calcifying organisms, but may benefit primary producers under dissolved inorganic carbon (DIC) limitation. To improve predictions of the ecological effects of ocean acidification, the net gains and losses between the processes of photosynthesis and calcification need to be studied jointly on physiological and population levels. We studied productivity, respiration, and abundances of the symbiont-bearing foraminifer species Marginopora vertebralis on natural CO2 seeps in Papua New Guinea and conducted additional studies on production and calcification on the Great Barrier Reef (GBR) using artificially enhanced pCO2 . Net oxygen production increased up to 90% with increasing pCO2 ; temperature, light, and pH together explaining 61% of the variance in production. Production increased with increasing light and increasing pCO2 and declined at higher temperatures. Respiration was also significantly elevated (~25%), whereas calcification was reduced (16-39%) at low pH/high pCO2 compared to present-day conditions. In the field, M. vertebralis was absent at three CO2 seep sites at pHTotal levels below ~7.9 (pCO2 ~700 µatm), but it was found in densities of over 1000 m(-2) at all three control sites. The study showed that endosymbiotic algae in foraminifera benefit from increased DIC availability and may be naturally carbon limited. The observed reduction in calcification may have been caused either by increased energy demands for proton pumping (measured as elevated rates of respiration) or by stronger competition for DIC from the more productive symbionts. The net outcome of these two competing processes is that M. vertebralis cannot maintain populations under pCO2 exceeding 700 µatm, thus are likely to be extinct in the next century.

13.
Glob Chang Biol ; 18(9): 2792-803, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501057

RESUMO

Predicting the impacts of ocean acidification on coastal ecosystems requires an understanding of the effects on macroalgae and their grazers, as these underpin the ecology of rocky shores. Whilst calcified coralline algae (Rhodophyta) appear to be especially vulnerable to ocean acidification, there is a lack of information concerning calcified brown algae (Phaeophyta), which are not obligate calcifiers but are still important producers of calcium carbonate and organic matter in shallow coastal waters. Here, we compare ecological shifts in subtidal rocky shore systems along CO2 gradients created by volcanic seeps in the Mediterranean and Papua New Guinea, focussing on abundant macroalgae and grazing sea urchins. In both the temperate and tropical systems the abundances of grazing sea urchins declined dramatically along CO2 gradients. Temperate and tropical species of the calcifying macroalgal genus Padina (Dictyoaceae, Phaeophyta) showed reductions in CaCO3 content with CO2 enrichment. In contrast to other studies of calcified macroalgae, however, we observed an increase in the abundance of Padina spp. in acidified conditions. Reduced sea urchin grazing pressure and significant increases in photosynthetic rates may explain the unexpected success of decalcified Padina spp. at elevated levels of CO2 . This is the first study to provide a comparison of ecological changes along CO2 gradients between temperate and tropical rocky shores. The similarities we found in the responses of Padina spp. and sea urchin abundance at several vent systems increases confidence in predictions of the ecological impacts of ocean acidification over a large geographical range.

14.
Mar Pollut Bull ; 169: 112539, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34153875

RESUMO

Good water quality is essential to the health of marine ecosystems, yet current metrics used to track water quality in the Great Barrier Reef are not strongly tied to ecological outcomes. There is a need for a better water quality index (WQI). Benthic irradiance, the amount of light reaching the seafloor, is critical for coral and seagrass health and is strongly affected by water quality. It therefore represents a strong candidate for use as a water quality indicator. Here, we introduce a new index based on remote sensing benthic light (bPAR) from ocean color. Resulting bPAR index timeseries, based on the extent to which the observed bPAR fell short of the locally- and seasonally-specific optimum, showed strong spatial and temporal variability, which was consistent with the dynamics that govern changes in water clarity in the Great Barrier Reef. Our new index is ecologically relevant, responsive to changes in light availability and provides a robust metric that may complement current Great Barrier Reef water quality metrics.


Assuntos
Antozoários , Qualidade da Água , Animais , Austrália , Recifes de Corais , Ecossistema , Água
15.
Sci Rep ; 11(1): 19927, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620911

RESUMO

This study investigates the effects of long-term exposure to OA on skeletal parameters of four tropical zooxanthellate corals naturally living at CO2 seeps and adjacent control sites from two locations (Dobu and Upa Upasina) in the Papua New Guinea underwater volcanic vent system. The seeps are characterized by seawater pH values ranging from 8.0 to about 7.7. The skeletal porosity of Galaxea fascicularis, Acropora millepora, massive Porites, and Pocillopora damicornis was higher (up to ~ 40%, depending on the species) at the seep sites compared to the control sites. Pocillopora damicornis also showed a decrease of micro-density (up to ~ 7%). Thus, further investigations conducted on this species showed an increase of the volume fraction of the larger pores (up to ~ 7%), a decrease of the intraskeletal organic matrix content (up to ~ 15%), and an increase of the intraskeletal water content (up to ~ 59%) at the seep sites. The organic matrix related strain and crystallite size did not vary between seep and control sites. This multi-species study showed a common phenotypic response among different zooxanthellate corals subjected to the same environmental pressures, leading to the development of a more porous skeletal phenotype under OA.


Assuntos
Aclimatação , Antozoários/anatomia & histologia , Antozoários/fisiologia , Dióxido de Carbono/metabolismo , Animais , Clima , Recifes de Corais , Meio Ambiente , Geografia , Concentração de Íons de Hidrogênio , Papua Nova Guiné , Água do Mar/química , Termogravimetria
16.
Biol Bull ; 241(3): 330-346, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35015620

RESUMO

AbstractCrown-of-thorns sea stars (Acanthaster sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of Acanthaster sp. Renewed efforts to advance understanding and management of Pacific crown-of-thorns sea stars (Acanthaster sp.) on Australia's Great Barrier Reef require explicit consideration of relevant and tractable knowledge gaps. Drawing on established horizon scanning methodologies, this study identified contemporary knowledge gaps by asking active and/or established crown-of-thorns sea star researchers to pose critical research questions that they believe should be addressed to improve the understanding and management of crown-of-thorns sea stars on the Great Barrier Reef. A total of 38 participants proposed 246 independent research questions, organized into 7 themes: feeding ecology, demography, distribution and abundance, predation, settlement, management, and environmental change. Questions were further assigned to 48 specific topics nested within the 7 themes. During this process, redundant questions were removed, which reduced the total number of distinct research questions to 172. Research questions posed were mostly related to themes of demography (46 questions) and management (48 questions). The dominant topics, meanwhile, were the incidence of population irruptions (16 questions), feeding ecology of larval sea stars (15 questions), effects of elevated water temperature on crown-of-thorns sea stars (13 questions), and predation on juveniles (12 questions). While the breadth of questions suggests that there is considerable research needed to improve understanding and management of crown-of-thorns sea stars on the Great Barrier Reef, the predominance of certain themes and topics suggests a major focus for new research while also providing a roadmap to guide future research efforts.


Assuntos
Antozoários , Estrelas-do-Mar , Animais , Austrália , Biologia , Recifes de Corais , Humanos
17.
Sci Rep ; 10(1): 18602, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110129

RESUMO

Coral reefs are highly sensitive to ocean acidification due to rising atmospheric CO2 concentrations. We present 10 years of data (2009-2019) on the long-term trends and sources of variation in the carbon chemistry from two fixed stations in the Australian Great Barrier Reef. Data from the subtropical mid-shelf GBRWIS comprised 3-h instrument records, and those from the tropical coastal NRSYON were monthly seawater samples. Both stations recorded significant variation in seawater CO2 fugacity (fCO2), attributable to seasonal, daytime, temperature and salinity fluctuations. Superimposed over this variation, fCO2 progressively increased by > 2.0 ± 0.3 µatm year-1 at both stations. Seawater temperature and salinity also increased throughout the decade, whereas seawater pH and the saturation state of aragonite declined. The decadal upward fCO2 trend remained significant in temperature- and salinity-normalised data. Indeed, annual fCO2 minima are now higher than estimated fCO2 maxima in the early 1960s, with mean fCO2 now ~ 28% higher than 60 years ago. Our data indicate that carbonate dissolution from the seafloor is currently unable to buffer the Great Barrier Reef against ocean acidification. This is of great concern for the thousands of coral reefs and other diverse marine ecosystems located in this vast continental shelf system.

18.
Mar Environ Res ; 147: 80-89, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31010596

RESUMO

Coastal water quality and light attenuation can detrimentally affect coral health. This study investigated the effects of light limitation and reduced water quality on the physiological performance of the coral Acropora tenuis. Branches of individual colonies were collected in 2 m water depth at six inshore reefs at increasing distances from major river sources in the Great Barrier Reef, along a strong water quality gradient in the Burdekin and a weak gradient in the Whitsunday region. Rates of net photosynthesis, dark respiration, and light and dark calcification were determined at daily light integrals (DLI) of moderate (13.86-16.38 mol photons m-2 d-1), low (7.92-9.36 mol photons m-2 d-1) and no light (0 mol photons m-2 d-1), in both the dry season (October 2013, June 2014) and the wet season (February 2014). Along the strong but not the weak water quality gradient, rates of net photosynthesis, dark respiration and light calcification increased towards the river mouth both in the dry and the wet seasons. Additionally, a ∼50% light reduction (from moderate to low light), as often found in shallow turbid waters in the Burdekin region, reduced rates of net photosynthesis and light calcification by up to 70% and 50%. The data show the acclimation potential in A. tenuis to river derived nutrients and sediments at moderate DLI (i.e., in very shallow water). However, prolonged and frequent periods of low DLI (i.e., in deeper water, especially after high river sediment discharges) will affect the corals' energy balance, and may represent a major factor limiting the depth distribution of these corals in turbid coastal reefs.


Assuntos
Antozoários , Recifes de Corais , Luz , Animais , Rios , Estações do Ano , Qualidade da Água
19.
PLoS One ; 13(5): e0197130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847575

RESUMO

Ocean acidification is expected to alter community composition on coral reefs, but its effects on reef community metabolism are poorly understood. Here we document how early successional benthic coral reef communities change in situ along gradients of carbon dioxide (CO2), and the consequences of these changes on rates of community photosynthesis, respiration, and light and dark calcification. Ninety standardised benthic communities were grown on PVC tiles deployed at two shallow-water volcanic CO2 seeps and two adjacent control sites in Papua New Guinea. Along the CO2 gradient, both the upward facing phototrophic and the downward facing cryptic communities changed in their composition. Under ambient CO2, both communities were dominated by calcifying algae, but with increasing CO2 they were gradually replaced by non-calcifying algae (predominantly green filamentous algae, cyanobacteria and macroalgae, which increased from ~30% to ~80% cover). Responses were weaker in the invertebrate communities, however ascidians and tube-forming polychaetes declined with increasing CO2. Differences in the carbonate chemistry explained a far greater amount of change in communities than differences between the two reefs and successional changes from five to 13 months, suggesting community successions are established early and are under strong chemical control. As pH declined from 8.0 to 7.8, rates of gross photosynthesis and dark respiration of the 13-month old reef communities (upper and cryptic surfaces combined) significantly increased by 10% and 20%, respectively, in response to altered community composition. As a consequence, net production remained constant. Light and dark calcification rates both gradually declined by 20%, and low or negative daily net calcification rates were observed at an aragonite saturation state of <2.3. The study demonstrates that ocean acidification as predicted for the end of this century will strongly alter reef communities, and will significantly change rates of community metabolism.


Assuntos
Distribuição Animal/fisiologia , Antozoários/fisiologia , Dióxido de Carbono/química , Carbonatos/química , Clorófitas/fisiologia , Invertebrados/fisiologia , Animais , Cálcio/química , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Fontes Hidrotermais , Oceanos e Mares , Papua Nova Guiné , Fotossíntese/fisiologia
20.
PLoS One ; 12(9): e0185469, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957378

RESUMO

Quantifying the amount of carbon dioxide (CO2) in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT), are often measured and used to calculate the partial pressure of CO2 (pCO2) in seawater, especially in biological CO2-manipulation studies, including large ecological experiments and those conducted at field sites. Here we compare four methods of pCO2 determination that have been used in biological ocean acidification experiments: 1) Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA) measurement of dissolved inorganic carbon (CT) and AT, 2) spectrophotometric measurement of pHT and AT, 3) electrode measurement of pHNBS and AT, and 4) the direct measurement of CO2 using a portable CO2 equilibrator with a non-dispersive infrared (NDIR) gas analyser. In this study, we found these four methods can produce very similar pCO2 estimates, and the three methods often suited to field-based application (spectrophotometric pHT, electrode pHNBS and CO2 equilibrator) produced estimated measurement uncertainties of 3.5-4.6% for pCO2. Importantly, we are not advocating the replacement of established methods to measure seawater carbonate chemistry, particularly for high-accuracy quantification of carbonate parameters in seawater such as open ocean chemistry, for real-time measures of ocean change, nor for the measurement of small changes in seawater pCO2. However, for biological CO2-manipulation experiments measuring differences of over 100 µatm pCO2 among treatments, we find the four methods described here can produce similar results with careful use.


Assuntos
Ácidos/química , Dióxido de Carbono/análise , Biologia Marinha/métodos , Oceanos e Mares , Pressão Parcial , Álcalis/química , Eletrodos , Raios Infravermelhos , Padrões de Referência , Água do Mar/química , Espectrofotometria , Incerteza
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa