Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bull Math Biol ; 85(10): 96, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670045

RESUMO

With over 2 million people in the UK suffering from chronic wounds, understanding the biochemistry and pharmacology that underpins these wounds and wound healing is of high importance. Chronic wounds are characterised by high levels of matrix metalloproteinases (MMPs), which are necessary for the modification of healthy tissue in the healing process. Overexposure of MMPs, however, adversely affects healing of the wound by causing further destruction of the surrounding extracellular matrix. In this work, we propose a mathematical model that focuses on the interaction of MMPs with dermal cells using a system of partial differential equations. Using biologically realistic parameter values, this model gives rise to travelling waves corresponding to a front of healthy cells invading a wound. From the arising travelling wave analysis, we observe that deregulated apoptosis results in the emergence of chronic wounds, characterised by elevated MMP concentrations. We also observe hysteresis effects when both the apoptotic rate and MMP production rate are varied, providing further insight into the management (and potential reversal) of chronic wounds.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Humanos , Apoptose , Cicatrização , Metaloproteinases da Matriz
2.
Bull Math Biol ; 84(8): 87, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821278

RESUMO

We derive a multiphase, moving boundary model to represent the development of tissue in vitro in a porous tissue engineering scaffold. We consider a cell, extra-cellular liquid and a rigid scaffold phase, and adopt Darcy's law to relate the velocity of the cell and liquid phases to their respective pressures. Cell-cell and cell-scaffold interactions which can drive cellular motion are accounted for by utilising relevant constitutive assumptions for the pressure in the cell phase. We reduce the model to a nonlinear reaction-diffusion equation for the cell phase, coupled to a moving boundary condition for the tissue edge, the diffusivity being dependent on the cell and scaffold volume fractions, cell and liquid viscosities and parameters that relate to cellular motion. Numerical simulations reveal that the reduced model admits three regimes for the evolution of the tissue edge at large time: linear, logarithmic and stationary. Employing travelling-wave and asymptotic analysis, we characterise these regimes in terms of parameters related to cellular production and motion. The results of our investigation allow us to suggest optimal values for the governing parameters, so as to stimulate tissue growth in an engineering scaffold.


Assuntos
Modelos Biológicos , Engenharia Tecidual , Difusão , Conceitos Matemáticos , Alicerces Teciduais
3.
Bull Math Biol ; 82(6): 74, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533355

RESUMO

The Allee effect describes populations that deviate from logistic growth models and arises in applications including ecology and cell biology. A common justification for incorporating Allee effects into population models is that the population in question has altered growth mechanisms at some critical density, often referred to as a threshold effect. Despite the ubiquitous nature of threshold effects arising in various biological applications, the explicit link between local threshold effects and global Allee effects has not been considered. In this work, we examine a continuum population model that incorporates threshold effects in the local growth mechanisms. We show that this model gives rise to a diverse family of Allee effects, and we provide a comprehensive analysis of which choices of local growth mechanisms give rise to specific Allee effects. Calibrating this model to a recent set of experimental data describing the growth of a population of cancer cells provides an interpretation of the threshold population density and growth mechanisms associated with the population.


Assuntos
Modelos Biológicos , Dinâmica Populacional/estatística & dados numéricos , Animais , Biologia Celular/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Ecologia/estatística & dados numéricos , Ecossistema , Humanos , Modelos Logísticos , Conceitos Matemáticos , Crescimento Demográfico , Processos Estocásticos , Análise de Sistemas
4.
J Theor Biol ; 451: 19-34, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29723541

RESUMO

We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics through a "stepping-stone" approach. We find that a temporal delay alone does not push species into extinction, but rather may stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics, and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be proposed as a solution to the paradox of enrichment.


Assuntos
Modelos Teóricos , Comportamento Predatório , Animais , Regiões Árticas , Arvicolinae , Raposas , Dinâmica Populacional
5.
Math Med Biol ; 40(4): 327-347, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996089

RESUMO

We employ the multiphase, moving boundary model of Byrne et al. (2003, Appl. Math. Lett., 16, 567-573) that describes the evolution of a motile, viscous tumour cell phase and an inviscid extracellular liquid phase. This model comprises two partial differential equations that govern the cell volume fraction and the cell velocity, together with a moving boundary condition for the tumour edge, and here we characterize and analyse its travelling-wave and pattern-forming behaviour. Numerical simulations of the model indicate that patterned solutions can be obtained, which correspond to multiple regions of high cell density separated by regions of low cell density. In other parameter regimes, solutions of the model can develop into a forward- or backward-moving travelling wave, corresponding to tumour growth or extinction, respectively. A travelling-wave analysis allows us to find the corresponding wave speed, as well as criteria for the growth or extinction of the tumour. Furthermore, a stability analysis of these travelling-wave solutions provides us with criteria for the occurrence of patterned solutions. Finally, we discuss how the initial cell distribution, as well as parameters related to cellular motion and cell-liquid drag, control the qualitative features of patterned solutions.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Neoplasias/patologia
6.
J R Soc Interface ; 18(175): 20200950, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593209

RESUMO

While the pathological mechanisms in COVID-19 illness are still poorly understood, it is increasingly clear that high levels of pro-inflammatory mediators play a major role in clinical deterioration in patients with severe disease. Current evidence points to a hyperinflammatory state as the driver of respiratory compromise in severe COVID-19 disease, with a clinical trajectory resembling acute respiratory distress syndrome, but how this 'runaway train' inflammatory response emerges and is maintained is not known. Here, we present the first mathematical model of lung hyperinflammation due to SARS-CoV-2 infection. This model is based on a network of purported mechanistic and physiological pathways linking together five distinct biochemical species involved in the inflammatory response. Simulations of our model give rise to distinct qualitative classes of COVID-19 patients: (i) individuals who naturally clear the virus, (ii) asymptomatic carriers and (iii-v) individuals who develop a case of mild, moderate, or severe illness. These findings, supported by a comprehensive sensitivity analysis, point to potential therapeutic interventions to prevent the emergence of hyperinflammation. Specifically, we suggest that early intervention with a locally acting anti-inflammatory agent (such as inhaled corticosteroids) may effectively blockade the pathological hyperinflammatory reaction as it emerges.


Assuntos
COVID-19/imunologia , COVID-19/fisiopatologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Inflamação/imunologia , Pulmão/fisiopatologia , Corticosteroides , Citocinas/imunologia , Epitélio/imunologia , Humanos , Pulmão/patologia , Modelos Imunológicos , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/fisiopatologia , SARS-CoV-2/patogenicidade
7.
Lancet Respir Med ; 9(7): 763-772, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844996

RESUMO

BACKGROUND: Multiple early reports of patients admitted to hospital with COVID-19 showed that patients with chronic respiratory disease were significantly under-represented in these cohorts. We hypothesised that the widespread use of inhaled glucocorticoids among these patients was responsible for this finding, and tested if inhaled glucocorticoids would be an effective treatment for early COVID-19. METHODS: We performed an open-label, parallel-group, phase 2, randomised controlled trial (Steroids in COVID-19; STOIC) of inhaled budesonide, compared with usual care, in adults within 7 days of the onset of mild COVID-19 symptoms. The trial was done in the community in Oxfordshire, UK. Participants were randomly assigned to inhaled budsonide or usual care stratified for age (≤40 years or >40 years), sex (male or female), and number of comorbidities (≤1 and ≥2). Randomisation was done using random sequence generation in block randomisation in a 1:1 ratio. Budesonide dry powder was delivered using a turbohaler at a dose of 400 µg per actuation. Participants were asked to take two inhalations twice a day until symptom resolution. The primary endpoint was COVID-19-related urgent care visit, including emergency department assessment or hospitalisation, analysed for both the per-protocol and intention-to-treat (ITT) populations. The secondary outcomes were self-reported clinical recovery (symptom resolution), viral symptoms measured using the Common Cold Questionnare (CCQ) and the InFLUenza Patient Reported Outcome Questionnaire (FLUPro), body temperature, blood oxygen saturations, and SARS-CoV-2 viral load. The trial was stopped early after independent statistical review concluded that study outcome would not change with further participant enrolment. This trial is registered with ClinicalTrials.gov, NCT04416399. FINDINGS: From July 16 to Dec 9, 2020, 167 participants were recruited and assessed for eligibility. 21 did not meet eligibility criteria and were excluded. 146 participants were randomly assigned-73 to usual care and 73 to budesonide. For the per-protocol population (n=139), the primary outcome occurred in ten (14%) of 70 participants in the usual care group and one (1%) of 69 participants in the budesonide group (difference in proportions 0·131, 95% CI 0·043 to 0·218; p=0·004). For the ITT population, the primary outcome occurred in 11 (15%) participants in the usual care group and two (3%) participants in the budesonide group (difference in proportions 0·123, 95% CI 0·033 to 0·213; p=0·009). The number needed to treat with inhaled budesonide to reduce COVID-19 deterioration was eight. Clinical recovery was 1 day shorter in the budesonide group compared with the usual care group (median 7 days [95% CI 6 to 9] in the budesonide group vs 8 days [7 to 11] in the usual care group; log-rank test p=0·007). The mean proportion of days with a fever in the first 14 days was lower in the budesonide group (2%, SD 6) than the usual care group (8%, SD 18; Wilcoxon test p=0·051) and the proportion of participants with at least 1 day of fever was lower in the budesonide group when compared with the usual care group. As-needed antipyretic medication was required for fewer proportion of days in the budesonide group compared with the usual care group (27% [IQR 0-50] vs 50% [15-71]; p=0·025) Fewer participants randomly assigned to budesonide had persistent symptoms at days 14 and 28 compared with participants receiving usual care (difference in proportions 0·204, 95% CI 0·075 to 0·334; p=0·003). The mean total score change in the CCQ and FLUPro over 14 days was significantly better in the budesonide group compared with the usual care group (CCQ mean difference -0·12, 95% CI -0·21 to -0·02 [p=0·016]; FLUPro mean difference -0·10, 95% CI -0·21 to -0·00 [p=0·044]). Blood oxygen saturations and SARS-CoV-2 load, measured by cycle threshold, were not different between the groups. Budesonide was safe, with only five (7%) participants reporting self-limiting adverse events. INTERPRETATION: Early administration of inhaled budesonide reduced the likelihood of needing urgent medical care and reduced time to recovery after early COVID-19. FUNDING: National Institute for Health Research Biomedical Research Centre and AstraZeneca.


Assuntos
Budesonida/administração & dosagem , Tratamento Farmacológico da COVID-19 , Glucocorticoides/administração & dosagem , Administração por Inalação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
8.
Proc Math Phys Eng Sci ; 476(2241): 20200350, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33071585

RESUMO

We present a solid theoretical foundation for interpreting the origin of Allee effects by providing the missing link in understanding how local individual-based mechanisms translate to global population dynamics. Allee effects were originally proposed to describe population dynamics that cannot be explained by exponential and logistic growth models. However, standard methods often calibrate Allee effect models to match observed global population dynamics without providing any mechanistic insight. By introducing a stochastic individual-based model, with proliferation, death and motility rates that depend on local density, we present a modelling framework that translates particular global Allee effects to specific individual-based mechanisms. Using data from ecology and cell biology, we unpack individual-level mechanisms implicit in an Allee effect model and provide simulation tools for others to repeat this analysis.

9.
J R Soc Interface ; 16(159): 20190421, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31640499

RESUMO

Understanding how cells proliferate, migrate and die in various environments is essential in determining how organisms develop and repair themselves. Continuum mathematical models, such as the logistic equation and the Fisher-Kolmogorov equation, can describe the global characteristics observed in commonly used cell biology assays, such as proliferation and scratch assays. However, these continuum models do not account for single-cell-level mechanics observed in high-throughput experiments. Mathematical modelling frameworks that represent individual cells, often called agent-based models, can successfully describe key single-cell-level features of these assays but are computationally infeasible when dealing with large populations. In this work, we propose an agent-based model with crowding effects that is computationally efficient and matches the logistic and Fisher-Kolmogorov equations in parameter regimes relevant to proliferation and scratch assays, respectively. This stochastic agent-based model allows multiple agents to be contained within compartments on an underlying lattice, thereby reducing the computational storage compared to existing agent-based models that allow one agent per site only. We propose a systematic method to determine a suitable compartment size. Implementing this compartment-based model with this compartment size provides a balance between computational storage, local resolution of agent behaviour and agreement with classical continuum descriptions.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Simulação por Computador , Modelos Biológicos , Animais , Humanos , Processos Estocásticos
10.
Phys Rev E ; 97(4-1): 042215, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758621

RESUMO

We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa