Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093127

RESUMO

PURPOSE: Early detection of neurofibromatosis type 1 (NF1) associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, enabling early definitive treatment and potentially averting deadly outcomes. Here, we describe a cell-free DNA (cfDNA) fragmentomic approach which distinguishes non-malignant, pre-malignant and malignant forms of PNST in cancer predisposition syndrome NF1. EXPERIMENTAL DESIGN: cfDNA was isolated from plasma samples of a novel cohort of 101 NF1 patients and 21 healthy controls and underwent whole genome sequencing. We investigated diagnosis-specific signatures of copy number alterations (CNA) with in silico size selection as well as well as fragment profiles. Fragmentomics were analyzed using complementary feature types: bin-wise fragment size ratios, end-motifs, and fragment non-negative matrix factorization (NMF) signatures. RESULTS: The novel cohort of NF1 patients validated that our previous cfDNA CNA-based approach identifies malignant peripheral nerve sheath tumor (MPNST) but cannot distinguish among benign and premalignant states. Fragmentomic methods were able to differentiate pre-malignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. CONCLUSIONS: Novel cfDNA fragmentomic signatures distinguish atypical neurofibromas from benign plexiform neurofibromas and malignant peripheral nerve sheath tumors, enabling more precise clinical diagnosis and management. This study pioneers the early detection of malignant and premalignant peripheral nerve sheath tumors in NF1 and provides a blueprint for de-centralizing non-invasive cancer surveillance in hereditary cancer syndromes.

2.
medRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38293154

RESUMO

Early detection of neurofibromatosis type 1 (NF1) associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, potentially averting deadly outcomes. Here, we describe a cell-free DNA (cfDNA) fragmentomic approach which distinguishes non-malignant, pre-malignant and malignant forms of NF1 PNST. Using plasma samples from a novel cohort of 101 NF1 patients and 21 healthy controls, we validated that our previous cfDNA copy number alteration (CNA)-based approach identifies malignant peripheral nerve sheath tumor (MPNST) but cannot distinguish among benign and premalignant states. We therefore investigated the ability of fragment-based cfDNA features to differentiate NF1-associated tumors including binned genome-wide fragment length ratios, end motif analysis, and non-negative matrix factorization deconvolution of fragment lengths. Fragmentomic methods were able to differentiate pre-malignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. Overall, this study pioneers the early detection of malignant and premalignant peripheral nerve sheath tumors in NF1 patients using plasma cfDNA fragmentomics. In addition to screening applications, this novel approach distinguishes atypical neurofibromas from benign plexiform neurofibromas and malignant peripheral nerve sheath tumors, enabling more precise clinical diagnosis and management.

3.
PLoS One ; 18(9): e0291068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682953

RESUMO

Diffuse midline gliomas (DMG) are the most aggressive brain tumors of childhood and young adults, with documented 2-year survival rates <10%. Treatment failure is due in part to the function of the BBB. Intratumoral microdialysis sampling is an effective tool to determine brain entry of varied agents and could help to provide a better understanding of the relationship of drug permeability to DMG treatment responsivity. This is a non-randomized, single-center, phase 1 clinical trial. Up to seven young adult (18-39 years) patients with recurrent high-grade or diffuse midline glioma will be enrolled with the goal of 5 patients completing the trial over an anticipated 24 months. All patients will take abemaciclib pre-operatively for 4.5 days at twice daily dosing. Patients will undergo resection or biopsy, placement of a microdialysis catheter, and 48 hours of dialysate sampling coupled with timed plasma collections. If intratumoral tumor or brain dialysate sampling concentrations are >10nmol/L, or tumor tissue studies demonstrate CDK inhibition, then restart of abemaciclib therapy along with temozolomide will be administered for maintenance therapy and discontinued with evidence of radiologic or clinical disease progression. The poor survival associated with diffuse midline gliomas underscore the need for improved means to evaluate efficacy of drug delivery to tumor and peritumoral tissue. The findings of this novel study, will provide real-time measurements of BBB function which have the potential to influence future prognostic and diagnostic decisions in such a lethal disease with limited treatment options. Trial registration: Clinicaltrials.gov, NCT05413304. Registered June 10, 2022, Abemaciclib Neuropharmacokinetics of Diffuse Midline Glioma Using Intratumoral Microdialysis.


Assuntos
Soluções para Diálise , Glioma , Adulto Jovem , Humanos , Estudos de Viabilidade , Microdiálise , Protocolos Clínicos , Glioma/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa