Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 340: 117950, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094386

RESUMO

Landfill leachate (LL) represents a very complex effluent difficult to treat and to manage which usually requires a chemical pre-treatment. In this study, response surface methodology (RSM) was used to identify the optimum operating conditions of the Fenton process as a pre-treatment of LL in order to reduce the high organic content and simultaneously optimize the BOD5:TN:TP ratio. The dosages of Fenton process reagents, namely Fe2+ and H2O2, were used as variables for the implementation of RSM. Chemical oxygen demand (COD), five-days biochemical oxygen demand (BOD5), total nitrogen (TN), total phosphorus (TP) removals (and simultaneously BOD5:TN:TP ratio), sludge-to-iron ratio (SIR) and organic removal-to-sludge ratio (ORSR) were selected as target responses. This approach considered the SIR and ORSR parameters which are a useful tool for assessing sludge formation during the process along with organic matter removal. The variables (H2O2 and Fe2+ concentrations) significantly affected the responses, as the role of oxidation mechanism is dominant with respect to coagulation one. The pH for the process was fixed to 2.8 while the treatment time was set to 2 h. The optimum operational conditions obtained by perturbation and 3D surface plot, were found to be 4262 mg/L and 5104 mg/L for Fe2+ and H2O2, respectively (H2O2/Fe2+ molar ratio = 2) with COD, BOD5, TN and TP removals of 70%, 67%, 84% and 96% respectively, while SIR and ORSR final values were 1.15 L/mol and 33.79 g/L respectively, in accordance with models-predicted values. Moreover, the initial unbalanced BOD5:TN:TP ratio (9:1:1) was significantly improved (100:6:1), making the effluent suitable for a subsequent biological treatment. The investigated approach allowed to optimize the removal of organic load and nutrients as well as to minimize the sludge formation in Fenton process, providing a useful tool for the operation and management of LL pre-treatment.


Assuntos
Esgotos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução
2.
Environ Sci Pollut Res Int ; 30(2): 3112-3120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35945319

RESUMO

Thermo-mineral springs are widely spread over the volcanic areas of Salerno, a city in southern Italy. Although the water of thermal structures provides beneficial effects on human health, the air is characterized by the presence of potentially toxic compounds, such as hydrogen sulphide (H2S) and sulphur dioxide (SO2). Exposure to sulphurous compounds may have detrimental effects on human health, with asthma being the most common. In this study, air concentrations of H2S and SO2 in the thermal springs of Contursi Terme (Salerno, Italy) were monitored for 4 months (using both active and passive sampling), along with the chemical and microclimatic characterization of thermal water, to assess workers' exposure to these pollutants. An in-depth characterization of indoor air at the springs is paramount to establish emission control limits for occupational exposure and to take protective measures. The air concentration of SO2 varied from 0.11 ± 0.02 to 0.91 ± 0.02 mg/m3, following a seasonal pattern (higher values in winter and lower in spring). Conversely, indoor H2S concentrations did not vary significantly with time, but outdoor levels (from 0.40 ± 0.03 to 1.90 ± 0.03 mg/m3) were always higher than indoor ones (from 0.11 ± 0.03 to 0.56 ± 0.03 mg/m3). Not negligible air concentrations of these pollutants were detected in this thermal spring workplace, so further investigations are needed to ensure workers' safety.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Exposição Ocupacional , Humanos , Poluentes Atmosféricos/análise , Exposição Ocupacional/análise , Dióxido de Enxofre , Minerais , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental
3.
Environ Sci Pollut Res Int ; 30(47): 104633-104639, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37707725

RESUMO

The identification of the degradation products in objects of cultural significance, including musical instruments (e.g., a piano), is a key issue for the preservation and valorisation processes of cultural heritage. The aim of this study is to characterize the degradation products of lead weights from an important Steinway & sons piano using a multi-analytical approach that includes ionic chromatography (IC), X-ray diffraction (XRD) and Fourier transform-infrared (FTIR) spectroscopy analyses. These techniques allowed us to identify hydrocerussite as the main degradation product on the superficial layer of lead weights, followed by lead acetate and formate. Moreover, accelerated corrosion experiments in closed environments were performed under acetic and formic acid atmospheres to evaluate the development of lead acetate and formate over time. Exposure of lead weights to formic and acetic acid vapours leads to the prevalent formation of basic lead formate, which promotes the formation of hydrocerussite. These results can help to limit the degradation of these piano components and consequently preserve the sound of the piano itself.


Assuntos
Chumbo , Núcleo Familiar , Ácido Acético , Formiatos
4.
Environ Sci Pollut Res Int ; 29(20): 29409-29418, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34189694

RESUMO

In this paper, we analysed the efflorescences present in the frescos of a monumental complex named S. Pietro a Corte situated in the historic centre of Salerno (Campania, Italy). The groundwater of the historic centre is fed by two important streams (the Rafastia and the Fusandola) that can be the sources of water penetration. The aims of this work are to (i) identify the stream that reaches the ancient frigidarium of S. Pietro a Corte and (ii) characterize the efflorescences on damaged frescos in terms of chemical nature and sources. In order to accomplish the first aim, the water of the Rafastia river (7 samples) and the water of the Fusandola river (7 samples) were analysed and compared with the water of a well of the Church (7 samples). The ionic chromatography measurements on the water samples allowed us to identify the Rafastia as the river that feeds the ancient frigidarium of S. Pietro a Corte. To investigate the nature and the origin of the efflorescences (our second aim), anionic chromatography analyses, X-ray diffraction measurements, and the isotopic determination of nitrogen were performed on the efflorescences (9 samples) and the salts recovered from the well (6 samples). Results of these analyses show that efflorescences are mainly made of potassium nitrate with a δ15N value of + 9.3 ± 0.2‰. Consequently, a plausible explanation for their formation could be the permeation of sewage water on the walls of the monumental complex.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Nitratos/análise , Isótopos de Nitrogênio/análise , Rios/química , Água/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa