Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Chem Rec ; 24(1): e202300268, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37874033

RESUMO

Aluminum-sulfur batteries (AlSBs) exhibit significant potential as energy storage systems due to their notable attributes, including a high energy density, cost-effectiveness, and abundant availability of aluminum and sulfur. In order to commercialize AlSBs, an understanding of their working principles is necessary. In this review, we examine the current advancements in cathodes, both in theory and practice, as well as the progress made in aqueous and nonaqueous electrolytes. We also explore the modifications made to separators and the theoretical understanding of problems associated with AlSBs. Furthermore, we discuss future research directions aimed at resolving these issues. Our aim is to summarize the current progress in AlSBs and, based on recent progress and understanding of the mechanism, help design a battery to overcome the challenges that such batteries have been facing.

2.
J Environ Manage ; 357: 120610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581889

RESUMO

Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.


Assuntos
Recuperação e Remediação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Carvão Vegetal , Solo
3.
Skin Res Technol ; 29(11): e13524, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009016

RESUMO

INTRODUCTION: Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques. METHOD: This research uses a hybrid deep learning model that combines two cutting-edge approaches: Mask Region-based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset. RESULTS: The experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state-of-the-art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well. CONCLUSION: In conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.


Assuntos
Aprendizado Profundo , Melanoma , Dermatopatias , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Melanoma/patologia , Dermoscopia/métodos , Dermatopatias/diagnóstico por imagem , Internet
4.
Skin Res Technol ; 29(11): e13519, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009027

RESUMO

Automatic classification of Lyme disease rashes on the skin helps clinicians and dermatologists' probe and investigate Lyme skin rashes effectively. This paper proposes a new in-depth features fusion system to classify Lyme disease rashes. The proposed method consists of two main steps. First, three different deep learning models, Densenet201, InceptionV3, and Exception, were trained independently to extract the deep features from the erythema migrans (EM) images. Second, a deep feature fusion mechanism (meta classifier) is developed to integrate the deep features before the final classification output layer. The meta classifier is a basic deep convolutional neural network trained on original images and features extracted from base level three deep learning models. In the feature fusion mechanism, the last three layers of base models are dropped out and connected to the meta classifier. The proposed deep feature fusion method significantly improved the classification process, where the classification accuracy was 98.97%, which is particularly impressive than the other state-of-the-art models.


Assuntos
Doença de Lyme , Redes Neurais de Computação , Humanos , Pele , Doença de Lyme/diagnóstico
5.
Phytother Res ; 37(3): 903-912, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36437579

RESUMO

Nimbolide is an active constituent of Azadirachta indica and is known for its anti-inflammatory, anti-oxidant, immune-modulatory, and anti-cancer effects. Few studies suggest that nimbolide treatment influences the responses to rheumatoid arthritis, but the underlying molecular mechanisms involved are not yet well established. Therefore, the present study was designed to determine the effect of nimbolide on expression regulation of toll-like receptors to attenuate rheumatoid arthritis. The rheumatoid arthritis model was established by injecting complete Freund's adjuvant (CFA) intra-dermally into the sub-plantar region of the left hind paw of rats. Nimbolide (20 mg/kg) and piroxicam (10 mg/kg) were given to arthritic rats. Rats treated with nimbolide showed a significant reduction in inflammatory cells, rheumatoid factor, ESR, and improved the body weight. The results indicated that nimbolide possesses the capacity to attenuate rheumatoid arthritis by downregulating toll-like receptors, IL-17, IL-23, HSP70, and IFN-γ expression levels. Nimbolide treatment showed significant reduction in the severity of inflammation and destruction of joints and showed comparable effects to piroxicam, which is a standard non-steroidal anti-inflammatory drug used for the treatment of rheumatoid arthritis. It can be concluded that nimbolide can be considered as a potential candidate for therapeutic targeting of the toll-like receptors pathway in rheumatoid arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Adjuvante de Freund/efeitos adversos , Piroxicam/efeitos adversos , Artrite Experimental/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Transdução de Sinais , Artrite Reumatoide/tratamento farmacológico , Antioxidantes/uso terapêutico
6.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985607

RESUMO

Over the past decade, methicillin-resistant Staphylococcus aureus (MRSA) has become a major source of biofilm formation and a major contributor to antimicrobial resistance. The genes that govern biofilm formation are regulated by a signaling mechanism called the quorum-sensing system. There is a need for new molecules to treat the infections caused by dangerous pathogens like MRSA. The current study focused on an alternative approach using juglone derivatives from Reynoutria japonica as quorum quenchers. Ten bioactive compounds from this plant, i.e., 2-methoxy-6-acetyl-7-methyljuglone, emodin, emodin 8-o-b glucoside, polydatin, resveratrol, physcion, citreorosein, quercetin, hyperoside, and coumarin were taken as ligands and docked with accessory gene regulator proteins A, B, and C and the signal transduction protein TRAP. The best ligand was selected based on docking score, ADMET properties, and the Lipinski rule. Considering all these parameters, resveratrol displayed all required drug-like properties with a docking score of -8.9 against accessory gene regulator protein C. To further assess the effectiveness of resveratrol, it was compared with the commercially available antibiotic drug penicillin. A comparison of all drug-like characteristics showed that resveratrol was superior to penicillin in many aspects. Penicillin showed a binding affinity of -6.7 while resveratrol had a score of -8.9 during docking. This was followed by molecular dynamic simulations wherein inhibitors in complexes with target proteins showed stability inside the active site during the 100 ns simulations. Structural changes due to ligand movement inside the cavity were measured in the protein targets, but they remained static due to hydrogen bonds. The results showed acceptable pharmacokinetic properties for resveratrol as compared to penicillin. Thus, we concluded that resveratrol has protective effects against Staphylococcus aureus infections and that it suppresses the quorum-sensing ability of this bacterium by targeting its infectious proteins.


Assuntos
Emodina , Staphylococcus aureus Resistente à Meticilina , Reynoutria , Resveratrol/farmacologia , Emodina/farmacologia , Ligantes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Percepção de Quorum , Penicilinas/farmacologia , Testes de Sensibilidade Microbiana , Biofilmes
7.
BMC Gastroenterol ; 22(1): 401, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028802

RESUMO

BACKGROUND: The present study investigates if common missense functional variants p.I148M and p.E167K in PNPLA3 and TM6SF2 genes, respectively, associate with development of hepatic fibrosis and cirrhosis in a geographically novel cohort of Pakistani chronic hepatitis C (CHC) patients. METHODS: In total, 502 Pakistani CHC patients [242 males, median age 40 years, 220 with significant hepatic fibrosis, including 114 with cirrhosis] were genotyped for PNPLA3 and TM6SF2 variants using TaqMan genotyping assays. Associations between genotypes, biochemical and clinical parameters were evaluated. RESULTS: Genotypic distributions for PNPLA3 and TM6SF2 polymorphisms conformed to Hardy-Weinberg equilibrium and did not associate with fibrosis grades ≥ F2 or cirrhosis in any of the genetic models tested (all p = > 0.05). PNPLA3 and TM6SF2 variants did not modulate baseline characteristics and serum markers of liver injury in CHC patients. Similarly, increasing number of risk alleles of PNPLA3 and TM6SF2 polymorphisms had no trend effect on serum liver enzyme activities or proportion of CHC patients with significant or advanced fibrosis or cirrhosis (p = > 0.05). The same trend of no association with hepatic fibrosis or cirrhosis persisted in the multivariate logistic regression models adjusting for age, gender, body mass index and HCV viral load (p = > 0.05). CONCLUSIONS: PNPLA3 and TM6SF2 variants do not appear to modulate development of hepatic fibrosis or cirrhosis in present CHC patients of Pakistani origin, and may be of more relevance in liver pathology involving abnormalities in hepatic fat accumulation. These results also reflect the divergent associations observed for different genetic modifiers of hepatic fibrosis and cirrhosis in distinct ethnicities.


Assuntos
Aciltransferases , Hepatite C Crônica , Cirrose Hepática , Proteínas de Membrana , Fosfolipases A2 Independentes de Cálcio , Aciltransferases/genética , Adulto , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Hepatite C Crônica/genética , Humanos , Cirrose Hepática/genética , Masculino , Proteínas de Membrana/genética , Paquistão , Fosfolipases A2 Independentes de Cálcio/genética , Polimorfismo de Nucleotídeo Único
8.
Biochem J ; 478(19): 3655-3670, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529035

RESUMO

Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness - which is limited to the parasite's adult form - and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. Fourteen of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.


Assuntos
Descoberta de Drogas/métodos , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Schistosoma mansoni/enzimologia , Tiazóis/metabolismo , Animais , Domínio Catalítico , Cristalização , Cristalografia por Raios X/métodos , Dimetil Sulfóxido/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Purina-Núcleosídeo Fosforilase/genética , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
9.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808454

RESUMO

Alteration in Land Use/Cover (LULC) considered a major challenge over the recent decades, as it plays an important role in diminishing biodiversity, altering the macro and microclimate. Therefore, the current study was designed to examine the past 30 years (1987−2017) changes in LULC and Land Surface Temperature (LST) and also simulated for next 30 years (2047). The LULC maps were developed based on maximum probability classification while the LST was retrieved from Landsat thermal bands and Radiative Transfer Equation (RTE) method for the respective years. Different approaches were used, such as Weighted Evidence (WE), Cellular Automata (CA) and regression prediction model for the year 2047. Resultantly, the LULC classification showed increasing trend in built-up and bare soil classes (13 km2 and 89 km2), and the decreasing trend in vegetation class (−144 km2) in the study area. In the next 30 years, the built-up and bare soil classes would further rise with same speed (25 km2 and 36.53 km2), and the vegetation class would further decline (−147 km2) until 2047. Similarly for LST, the temperature range for higher classes (27 -< 30 °C) increased by about 140 km2 during 1987−2017, which would further enlarge (409 km2) until 2047. The lower LST range (15 °C to <21 °C) showed a decreasing trend (−54.94 km2) and would further decline to (−20 km2) until 2047 if it remained at the same speed. Prospective findings will be helpful for land use planners, climatologists and other scientists in reducing the increasing LST associated with LULC changes.


Assuntos
Monitoramento Ambiental , Altitude , Biodiversidade , Simulação por Computador , Paquistão , Robótica , Solo , Temperatura , Verduras
10.
Molecules ; 27(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956877

RESUMO

The current study explored the effects of natural compounds, berbamine, bergapten, and carveol on paclitaxel-associated neuroinflammatory pain. Berbamine, an alkaloid obtained from BerberisamurensisRuprhas been previously researched for anticancer and anti-inflammatory potential. Bergapten is 5-methoxsalenpsoralen previously investigated in cancer, vitiligo, and psoriasis. Carveol obtained from caraway is a component of essential oil. The neuropathic pain model was induced by administering 2 mg/kg of paclitaxel (PTX) every other day for a week. After the final PTX injection, a behavioral analysis was conducted, and subsequently, tissue was collected for molecular analysis. Berbamine, bergapten, and carveol treatment attenuated thermal hypersensitivity, improved latency of falling, normalized the changes in body weight, and increased the threshold for pain sensation. The drugs increased the protective glutathione (GSH) and glutathione S-transferase (GST) levels in the sciatic nerve and spinal cord while lowering inducible nitric oxide synthase (iNOS) and lipid peroxidase (LPO). Hematoxylin and eosin (H and E) and immunohistochemistry (IHC) examinations confirmed that the medication reversed the abnormal alterations. The aforementioned natural substances inhibited cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κb) overexpression, as evidenced by enzyme-linked immunosorbant assay (ELISA) and Western blot and hence provide neuroprotection in chronic constriction damage.


Assuntos
Dor Crônica , Neuralgia , Fármacos Neuroprotetores , 5-Metoxipsoraleno/uso terapêutico , Dor Crônica/tratamento farmacológico , Humanos , NF-kappa B/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Paclitaxel/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
11.
BMC Plant Biol ; 21(1): 579, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876002

RESUMO

BACKGROUND: The Agrobacterium mediated transformation has been routinely used in lots of plant species as a powerful tool to deliver genes of interest into a host plant. However, the transformation of elite and commercially valuable cultivar is still limited by the genotype-dependency, and the efficiency of Agrobacterium infection efficiency is crucial for the success of transformation. RESULTS: In this study, the microspore-derived embryogenic calli (MDEC) of barley elite cultivars and breeding lines were employed as unique subjects to characterize the genotypic response during Agrobacterium infection process. Our results identified compatible barley genotypes (GanPi 6 and L07, assigned as GP6-L07 group) and one recalcitrant genotype (Hong 99, assigned as H99) for the Agrobacterium strain LBA4404 infection using GUS assay. The accumulation trend of reactive oxygen species (ROS) was similar among genotypes across the time course. The results of RNA-seq depicted that the average expressional intensity of whole genomic genes was similar among barley genotypes during Agrobacterium infection. However, the numbers of differentially expressed genes (DEGs) exhibited significant expressional variation between GP6-L07 and H99 groups from 6 to 12 h post-inoculation (hpi). Gene ontology (GO) enrichment analysis revealed different regulation patterns for the predicted biological processes between the early (up-regulated DEGs overrepresented at 2 hpi) and late stages (down-regulated DEGs overrepresented from 6 to 24 hpi) of infection. KEGG analysis predicted 12 pathways during Agrobacterium infection. Among which one pathway related to pyruvate metabolism was enriched in GP6 and L07 at 6 hpi. Two pathways related to plant hormone signal transduction and DNA replication showed expressional variation between GP6-L07 and H99 at 24 hpi. It was further validated by qRT-PCR assay for seven candidate genes (Aldehyde dehydrogenase, SAUR, SAUR50, ARG7, Replication protein A, DNA helicase and DNA replication licensing factor) involved in the three pathways, which are all up-regulated in compatible while down-regulated in recalcitrant genotypes, suggesting the potential compatibility achieved at later stage for the growth of Agrobacterium infected cells. CONCLUSIONS: Our findings demonstrated the similarity and difference between compatible and recalcitrant genotypes of barley MDEC upon Agrobacterium infection. Seven candidate genes involved in pyruvate metabolism, hormonal signal transduction and DNA replication were identified, which advocates the genotypic dependency during Agrobacterium infection process.


Assuntos
Agrobacterium/fisiologia , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Transformação Genética , Agrobacterium/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Genótipo , Hordeum/genética , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA
12.
Mol Genet Genomics ; 296(2): 391-408, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33464396

RESUMO

Soil salinity negatively impacts rapeseed (Brassica napus) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228 Brasica napus accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with Arabidopsis thaliana genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.


Assuntos
Brassica napus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal , Brassica napus/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Germinação , Fenótipo , Sementes/genética , Sementes/crescimento & desenvolvimento
13.
Arch Microbiol ; 203(4): 1309-1320, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33325000

RESUMO

Lipase is an important commercial enzyme with unique and versatile biotechnological applications. This study was conducted to biosynthesize and characterizes alkaliphilic lipase by Exiguobacterium sp. strain AMBL-20T isolated from the glacial water samples of the northeastern (Gilgit-Baltistan) region of Pakistan. The isolated bacterium was identified as Exiguobaterium sp. strain AMBL-20T on the basis of morphological, biochemical, and phylogenetic analysis of 16S rRNA sequences with GenBank accession number MW229267. The bacterial strain was further screened for its lipolytic activity, biosynthesis, and characterization by different parameters with the aim of maximizing lipase activity. Results showed that 2% Olive oil, 0.2% peptone at 25 °C, pH 8, and 24 h of incubation time found optimal for maximum lipase production. The lipase enzyme was partially purified by ammonium sulphate precipitation and its activity was standardized at pH 8 under 30 °C temperature. The enzyme showed functional stability over a range of temperature and pH. Hence, extracellular alkaliphilic lipase from Exiguobacterium sp. is a potential candidate with extraordinary industrial applications, particularly in bio-detergent formulations.


Assuntos
Exiguobacterium/enzimologia , Camada de Gelo/microbiologia , Lipase/metabolismo , Estabilidade Enzimática , Exiguobacterium/classificação , Exiguobacterium/genética , Exiguobacterium/isolamento & purificação , Concentração de Íons de Hidrogênio , Lipase/isolamento & purificação , Lipólise , Paquistão , Filogenia , RNA Ribossômico 16S/genética , Temperatura
14.
RNA Biol ; 18(11): 1653-1681, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33302789

RESUMO

RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.


Assuntos
Inativação Gênica , Proteínas de Insetos/metabolismo , Insetos/classificação , Insetos/genética , MicroRNAs/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Proteínas de Insetos/genética , Insetos/metabolismo , Filogenia , Domínios Proteicos
15.
Pak J Pharm Sci ; 34(4(Supplementary)): 1509-1517, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34799326

RESUMO

Due to the emerging mortality rate of colorectal cancer there is a high need for the management and control of this disease. Although several treatment approaches are being developed day by day yet the high incidence rate of colorectal cancer is still not controlled. To ease in the development of treatment therapies for colorectal cancer two derivatives of ethyl 2-aminothiazole 4-carboxylate were designed and synthesized. The compounds Ethyl 2-(2-(1,3-dioxoisoindolin-2-yl)acetamido)thiazole-4-carboxylate (5a) and ethyl 2-(2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanamido)thiazole-4-carboxylate (5b) were characterized and studied for their anti-cancer activities. The in silico molecular modeling studies were performed against the target protein beta-catenin which is an important player in the progression of colorectal cancer. The in silico ADMET studies were performed to assess the basic physicochemical properties of these compounds. The in vitro antiproliferative assay and the enzyme inhibitory assay was performed to validate the role of these compounds in the colorectal cancer. The preliminary cytotoxic assay and the MTT assay of the compounds 5a and 5b against the colorectal cancer cell line HCT 116 showed 60% inhibition of cell proliferation with IC50 of 0.72µM and 1.55µM, respectively. The standard methotrexate showed IC50 of 0.7µM showing potent inhibitory action of these compounds. The in vitro validation of the anti-cancer effect of both compounds revealed significant inhibition of beta-catenin concentration at higher doses as compared to control. Both the in vitro and in vivo assays of compounds showed effective anti-cancer activities and depicts the future potential of these compounds in colorectal cancer.


Assuntos
Aminoácidos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Tiazóis/química , Animais , Antineoplásicos/farmacocinética , Artemia , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica
16.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727088

RESUMO

Priority pollutants such as polyethylene (PE) microplastic, lead (Pb2+), and cadmium (Cd2+) have attracted the interest of environmentalists due to their ubiquitous nature and toxicity to all forms of life. In this study, periphytic biofilms (epiphyton and epixylon) were used to bioremediate heavy metals (HMs) and to biodegrade PE under high (120,000 ppm) methane (CH4) doses. Both periphytic biofilms were actively involved in methane oxidation, HMs accumulation and PE degradation. Epiphyton and epixylon both completely removed Pb2+ and Cd2+ at concentrations of 2 mg L-1 and 50 mg L-1, respectively, but only partially removed these HMs at a relatively higher concentration (100 mg L-1). Treatment containing 12% 13CH4 proved to be most effective for biodegradation of PE. A synergistic effect of HMs and PE drastically changed microbial biota and methanotrophic communities. High-throughput 16S rRNA gene sequencing revealed that Cyanobacteria was the most abundant class, followed by Gammaproteobacteria and Alphaproteobacteria in all high-methane-dose treatments. DNA stable-isotope probing was used to label 13C in a methanotrophic community. A biomarker for methane-oxidizing bacteria, pmoA gene sequence of a 13C-labeled fraction, revealed that Methylobacter was most abundant in all high-methane-dose treatments compared to near atmospheric methane (NAM) treatment, followed by Methylococcus. Methylomonas, Methylocystis, Methylosinus, and Methylocella were also found to be increased by high doses of methane compared to NAM treatment. Overall, Cd+2 had a more determinantal effect on methanotrophic activity than Pb2+. Epiphyton proved to be more effective than epixylon in HMs removal and PE biodegradation. The findings proved that both epiphyton and epixylon can be used to bioremediate HMs and biodegrade PE as an efficient ecofriendly technique under high methane concentrations.


Assuntos
Alphaproteobacteria/fisiologia , Biofilmes/crescimento & desenvolvimento , Cádmio/metabolismo , Gammaproteobacteria/fisiologia , Chumbo/metabolismo , Metano/metabolismo , Polietileno/metabolismo , Alphaproteobacteria/classificação , Biodegradação Ambiental , Gammaproteobacteria/classificação
17.
Physiol Mol Biol Plants ; 26(9): 1897-1910, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32939107

RESUMO

Phosphorus (P) is one of the essential macronutrients for rice. In this study, we used 120 rice backcross recombinant inbred lines (BRILs) derived from a cross indica cv. Changhui 891 and japonica cv. 02428. To elucidate the genetic control of P deficiency tolerance in rice, we have used high quality SNPs bin markers to identify some important loci underlying phosphorus deficiency. The bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. Based on this map, 50 loci, including four novel loci, qSL-3, qRL-11, qSDW-1, qRDW-1 with phenotypic variance 23.26%, 12.06%, 9.89% associated with P deficiency-related seedling traits were identified. No significant QTLs was found for root length under P+, shoot fresh weight P- and root length, shoot fresh weight for P+, P- and their ratio respectively. Root fresh weight, and root dry weight were strongly correlated to each other, and QTLs for these variables were located on the same chromosome 1 at the same region. Notably, 3 pleiotropic regions is the pioneer of our study, and these regions would facilitate map-based cloning to expedite the MAS selection for developing low phosphorous tolerant varieties. This study not only improves our knowledge about molecular processes associated with P deficiency, but also provides useful information to understand the genetic architecture of low phosphorous tolerance.

18.
Saudi Pharm J ; 28(12): 1580-1591, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424251

RESUMO

Zika virus (ZIKV) is one of the mosquito borne flavivirus with several outbreaks in past few years in tropical and subtropical regions. The non-structural proteins of flaviviruses are suitable active targets for inhibitory drugs due to their role in pathogenicity. In ZIKV, the non-structural protein 5 (NS5) RNA-Dependent RNA polymerase replicates its genome. Here we have performed virtual screening to identify suitable ligands that can potentially halt the ZIKV NS5 RNA dependent RNA polymerase (RdRp). During this process, we searched and screened a library of ligands against ZIKV NS5 RdRp. The selected ligands with significant binding energy and ligand-receptor interactions were further processed. Among the selected docked conformations, top five was further optimized at atomic level using molecular dynamic simulations followed by binding free energy calculations. The interactions of ligands with the target structure of ZIKV RdRp revealed that they form strong bonds within the active sites of the receptor molecule. The efficacy of these drugs against ZIKV can be further analyzed through in-vitro and in-vivo studies.

19.
BMC Biotechnol ; 19(1): 79, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747926

RESUMO

BACKGROUND: Drought is one of the most harmful abiotic stresses for plants, leading to reduced productivity of several economically important crops and, consequently, considerable losses in the agricultural sector. When plants are exposed to stressful conditions, such as drought and high salinity, they modulate the expression of genes that lead to developmental, biochemical, and physiological changes, which help to overcome the deleterious effects of adverse circumstances. Thus, the search for new specific gene promoter sequences has proved to be a powerful biotechnological strategy to control the expression of key genes involved in water deprivation or multiple stress responses. RESULTS: This study aimed to identify and characterize the GmRD26 promoter (pGmRD26), which is involved in the regulation of plant responses to drought stress. The expression profile of the GmRD26 gene was investigated by qRT-PCR under normal and stress conditions in Williams 82, BR16 and Embrapa48 soybean-cultivars. Our data confirm that GmRD26 is induced under water deficit with different induction folds between analyzed cultivars, which display different genetic background and physiological behaviour under drought. The characterization of the GmRD26 promoter was performed under simulated stress conditions with abscisic acid (ABA), polyethylene glycol (PEG) and drought (air dry) on A. thaliana plants containing the complete construct of pGmRD26::GUS (2.054 bp) and two promoter modules, pGmRD26A::GUS (909 pb) and pGmRD26B::GUS (435 bp), controlling the expression of the ß-glucuronidase (uidA) gene. Analysis of GUS activity has demonstrated that pGmRD26 and pGmRD26A induce strong reporter gene expression, as the pAtRD29 positive control promoter under ABA and PEG treatment. CONCLUSIONS: The full-length promoter pGmRD26 and the pGmRD26A module provides an improved uidA transcription capacity when compared with the other promoter module, especially in response to polyethylene glycol and drought treatments. These data indicate that pGmRD26A may become a promising biotechnological asset with potential use in the development of modified drought-tolerant plants or other plants designed for stress responses.


Assuntos
Ácido Abscísico/farmacologia , Glycine max/genética , Biotecnologia/métodos , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Glycine max/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
20.
Sensors (Basel) ; 19(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757104

RESUMO

The importance of body area sensor networks (BASNs) is increasing day by day because of their increasing use in Internet of things (IoT)-enabled healthcare application services. They help humans in improving their quality of life by continuously monitoring various vital signs through biosensors strategically placed on the human body. However, BASNs face serious challenges, in terms of the short life span of their batteries and unreliable data transmission, because of the highly unstable and unpredictable channel conditions of tiny biosensors located on the human body. These factors may result in poor data gathering quality in BASNs. Therefore, a more reliable data transmission mechanism is greatly needed in order to gather quality data in BASN-based healthcare applications. Therefore, this study proposes a novel, multiobjective, lion mating optimization inspired routing protocol, called self-organizing multiobjective routing protocol (SARP), for BASN-based IoT healthcare applications. The proposed routing scheme significantly reduces local search problems and finds the best dynamic cluster-based routing solutions between the source and destination in BASNs. Thus, it significantly improves the overall packet delivery rate, residual energy, and throughput with reduced latency and packet error rates in BASNs. Extensive simulation results validate the performance of our proposed SARP scheme against the existing routing protocols in terms of the packet delivery ratio, latency, packet error rate, throughput, and energy efficiency for BASN-based health monitoring applications.


Assuntos
Técnicas Biossensoriais/métodos , Atenção à Saúde , Tecnologia sem Fio , Algoritmos , Redes de Comunicação de Computadores , Atenção à Saúde/métodos , Fontes de Energia Elétrica , Corpo Humano , Humanos , Qualidade de Vida , Registros
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa