Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 11(8): e946, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647441

RESUMO

Most of the vaccines that are effective against SARS-CoV-2 have used the following functional strategies: inactivated viruses, live attenuated viruses, viral vector-based vaccines, subunit vaccines, recombinant proteins, and DNA/RNA vaccines. Among the vaccines that stimulate the host's immune system with the help of DNA are: undergoing Phase 2/3 trials including INO-4800 (International Vaccine Institute; Inovio Pharmaceuticals), Symvivo, Canada-COVID19 (AnGes, Inc.); GX-19 (Genexine, Inc.). BNT162b2 and mRNA-1273 vaccines were made by BioNTech/Pfizer/Fosun Pharma group and Moderna/NIAID group, respectively, which are considered as types of RNA vaccines. Vaccines that are based on the viral vector are AstraZeneca, Sputonium, and Johnson-Jensen. Among the inactive viral vaccines, the following can be mentioned: CoronaVac (Sinovac) WIBP vaccine (Wuhan Institute of Biological Products, Sinopharm), BBIBPCorV (Beijing Institute of Biological Products, Sinopharm), BBV152/Covaxin (Bharat Biotech, ICMR, National Institute of Virology) And among the protein-based/subunit vaccines, the following can be counted: NVX-CoV2373: (Novavax); SCB-2019 vaccine (Clover Biopharmaceuticals AUS Pty Ltd.); Covax-19 (GeneCure Biotechnologies; Vaxine Pty Ltd.) mRNA vaccines, viral vector vaccines, and protein subunit vaccines cannot cause disease because these vaccines stimulate the immune system to produce antibodies against virus proteins instead of the virus itself (or its antigen). MRNA vaccines increase SARS-CoV-2 proteins and ultimately stimulate the production of T and B lymphocytes. The epidemic of HCoVs and their destructive and harmful effects on life has caused the scientific community to seek the production of an effective and efficient vaccine before its catastrophic release. We all need to know that none of us will be healed until the other is healed. The purpose of this review article is to present a selection of existing knowledge in the field of fighting and preventing the coronavirus.


Assuntos
Produtos Biológicos , COVID-19 , Vacinas Virais , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , Vacinação
2.
Life Sci ; 305: 120760, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35787997

RESUMO

Alcohol-associated liver disease (ALD) comprises a spectrum of liver diseases that include: steatosis to alcohol-associated hepatitis, cirrhosis, and ultimately hepatocellular carcinoma. The pathophysiology and potential underlying mechanisms for alcohol-associated liver disease are unclear. Moreover, the treatment of ALD remains a challenge. Intestinal microbiota include bacteria, fungi, and viruses, that are now known to be important in the development of ALD. Alcohol consumption can change the gut microbiota and function leading to liver disease. Given the importance of interactions between intestinal microbiota, alcohol, and liver injury, the gut microbiota has emerged as a potential biomarker and therapeutic target. This review focuses on the potential mechanisms by which the gut microbiota may be involved in the pathogenesis of ALD and explains how this can be translated into clinical management. We discuss the potential of utilizing the gut microbiota signature as a biomarker in ALD patients. Additionally, we present an overview of the prospect of modulating the intestinal microbiota for the management of ALD.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Microbiota , Bactérias , Biomarcadores , Microbioma Gastrointestinal/fisiologia , Humanos , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/terapia , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa