Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Cell Physiol ; 234(11): 19761-19773, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30937905

RESUMO

Vascular calcification (VC) is an active and cell-mediated process that shares many common features with osteogenesis. Knowledge demonstrates that in the presence of risk factors, such as hypertension, vascular smooth muscle cells (vSMCs) lose their contractile phenotype and transdifferentiate into osteoblastic-like cells, contributing to VC development. Recently, menaquinones (MKs), also known as Vitamin K2 family, has been revealed to play an important role in cardiovascular health by decreasing VC. However, the MKs' effects and mechanisms potentially involved in vSMCs osteoblastic transdifferentiation are still unknown. The aim of this study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of MKs family, in the modulation of the vSMCs phenotype. To achieve this, vascular cells from spontaneously hypertensive rats (SHR) were used as an in vitro model of cell vascular dysfunction. vSMCs from Wistar Kyoto normotensive rats were used as control condition. The results showed that MK-4 preserves the contractile phenotype both in control and SHR-vSMCs through a γ-glutamyl carboxylase-dependent pathway, highlighting its capability to inhibit one of the mechanisms underlying VC process. Therefore, MK-4 may have an important role in the prevention of vascular dysfunction and atherosclerosis, encouraging further in-depth studies to confirm its use as a natural food supplement.


Assuntos
Aterosclerose/tratamento farmacológico , Hipertensão/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Vitamina K 2/análogos & derivados , Animais , Aterosclerose/genética , Aterosclerose/patologia , Pressão Sanguínea/genética , Carbono-Carbono Ligases/genética , Proliferação de Células , Transdiferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Hipertensão/genética , Hipertensão/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos , Vitamina K 2/farmacologia
2.
Neural Plast ; 2015: 396908, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146570

RESUMO

Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR) agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU). Oxaliplatin (1 µM, 48 h) reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase). On the contrary, the coculture incubation with 10 µM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-ß1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Compostos Organoplatínicos/toxicidade , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Glutamato-Amônia Ligase/metabolismo , Neurônios/efeitos dos fármacos , Oxaliplatina , Cultura Primária de Células , Ácido Pirúvico/análise , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/análise , Receptor Nicotínico de Acetilcolina alfa7/agonistas
3.
Int J Mol Sci ; 16(3): 5386-99, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25761243

RESUMO

Oxaliplatin-based chemotherapy improves the outcomes of metastatic colorectal cancer patients. Its most significant and dose-limiting side effect is the development of a neuropathic syndrome. The mechanism of the neurotoxicity is unclear. The limited knowledge about differences existing between neurotoxic and antitumor effects hinders the discovery of effective and safe adjuvant therapies. In vitro, we suggested cell-specific activation apoptotic pathways in normal nervous cells (astrocytes) vs. colon-cancer cells (HT-29). In the present research we compared the apoptotic signals evoked by oxaliplatin in astrocytes and HT-29 analyzing the intrinsic and extrinsic apoptotic pathways. In astrocytes, oxaliplatin induced a mitochondrial derangement measured as cytosolic release of cytochrome C, increase in superoxide anion levels and decreased expression of the antiapoptotic protein Bcl-2. Caspase-8, a main initiator of the extrinsic process remained unaltered. On the contrary, in HT-29 oxaliplatin increased caspase-8 activity and Bid expression, thus activating the extrinsic apoptosis, while the Bcl-2 increased expression blocked the mitochondrial damage. Data suggest the preferred activation of the intrinsic apoptosis as oxaliplatin damage signaling in normal nervous cells. The extrinsic pathway prevails in tumor cells indicating a possible strategy for planning new molecules to treat oxaliplatin-dependent neurotoxicity without negatively influence chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Astrócitos/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Compostos Organoplatínicos/farmacologia , Animais , Antineoplásicos/toxicidade , Astrócitos/metabolismo , Células Cultivadas , Células HT29 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organoplatínicos/toxicidade , Oxaliplatina , Células PC12 , Ratos , Ratos Sprague-Dawley
4.
Molecules ; 20(6): 9524-35, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26016544

RESUMO

We demonstrated that in coronary endothelial cells (RCEs) from normotensive Wistar Kyoto rats (WKY), the hormone relaxin (RLX) increases NO production and reduces calcium transients by a NO-related mechanism. Since an impairment of the NO pathway has been described in spontaneously hypertensive rats (SHR), the present study was aimed at exploring RLX effects on RCEs from SHR, hypothesizing that RLX could restore calcium responsiveness to NO. RCEs were isolated from WKY and SHR. Calcium transients were evaluated by image analysis after the administration of angiotensin II or α-thrombin. Angiotensin II (1 µM) caused a prompt rise of [Ca2+]i in WKY and SHR RCEs and a rapid decrease, being the decay time higher in SHR than in WKY. NOS inhibition increased calcium transient in WKY, but not in SHR RCEs. Whereas RLX pretreatment (24 h, 60 ng/mL) was ineffective in SHR, it strongly reduced calcium transient in WKY in a NO-dependent way. A similar behavior was measured using 30 U/mL α-thrombin. The current study offers evidence that RLX cannot restore NO responsiveness in SHR, suggesting an accurate selection of patients eligible for RLX treatment of cardiovascular diseases.


Assuntos
Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Relaxina/farmacologia , Angiotensina II/farmacologia , Animais , Sinalização do Cálcio , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Imagem Molecular , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Cultura Primária de Células , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Relaxina/metabolismo , Trombina/farmacologia
5.
Glia ; 61(7): 1155-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640798

RESUMO

In the developing and mature central nervous system, NG2 expressing cells comprise a population of cycling oligodendrocyte progenitor cells (OPCs) that differentiate into mature, myelinating oligodendrocytes (OLGs). OPCs are also characterized by high motility and respond to injury by migrating into the lesioned area to support remyelination. K(+) currents in OPCs are developmentally regulated during differentiation. However, the mechanisms regulating these currents at different stages of oligodendrocyte lineage are poorly understood. Here we show that, in cultured primary OPCs, the purinergic G-protein coupled receptor GPR17, that has recently emerged as a key player in oligodendrogliogenesis, crucially regulates K(+) currents. Specifically, receptor stimulation by its agonist UDP-glucose enhances delayed rectifier K(+) currents without affecting transient K(+) conductances. This effect was observed in a subpopulation of OPCs and immature pre-OLGs whereas it was absent in mature OLGs, in line with GPR17 expression, that peaks at intermediate phases of oligodendrocyte differentiation and is thereafter downregulated to allow terminal maturation. The effect of UDP-glucose on K(+) currents is concentration-dependent, blocked by the GPR17 antagonists MRS2179 and cangrelor, and sensitive to the K(+) channel blocker tetraethyl-ammonium, which also inhibits oligodendrocyte maturation. We propose that stimulation of K(+) currents is responsible for GPR17-induced oligodendrocyte differentiation. Moreover, we demonstrate, for the first time, that GPR17 activation stimulates OPC migration, suggesting an important role for this receptor after brain injury. Our data indicate that modulation of GPR17 may represent a strategy to potentiate the post-traumatic response of OPCs under demyelinating conditions, such as multiple sclerosis, stroke, and brain trauma.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Uridina Difosfato Glucose/farmacologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Antígenos/metabolismo , Encéfalo/citologia , Cálcio/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Proteoglicanas/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Células-Tronco , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia
6.
Mediators Inflamm ; 2013: 905360, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861563

RESUMO

Superoxide anion (O(2) (•-)) is overproduced in joint inflammation, rheumatoid arthritis, and osteoarthritis. Increased O(2) (•-) production leads to tissue damage, articular degeneration, and pain. In these conditions, the physiological defense against O(2) (•-), superoxide dismutases (SOD) are decreased. The Mn(II) complex MnL4 is a potent SOD mimetic, and in this study it was tested in inflammatory and osteoarticular rat pain models. In vivo protocols were approved by the animal Ethical Committee of the University of Florence. Pain was measured by paw pressure and hind limb weight bearing alterations tests. MnL4 (15 mg kg(-1)) acutely administered, significantly reduced pain induced by carrageenan, complete Freund's adjuvant (CFA), and sodium monoiodoacetate (MIA). In CFA and MIA protocols, it ameliorated the alteration of postural equilibrium. When administered by osmotic pump in the MIA osteoarthritis, MnL4 reduced pain, articular derangement, plasma TNF alpha levels, and protein carbonylation. The scaffold ring was ineffective. MnL4 (10(-7) M) prevented the lipid peroxidation of isolated human chondrocytes when O(2) (•-) was produced by RAW 264.7. MnL4 behaves as a potent pain reliever in acute inflammatory and chronic articular pain, being its efficacy related to antioxidant property. Therefore MnL4 appears as a novel protective compound potentially suitable for the treatment of joint diseases.


Assuntos
Compostos Organometálicos/farmacologia , Medição da Dor/métodos , Dor/tratamento farmacológico , Superóxido Dismutase/química , Acetatos , Animais , Antioxidantes/farmacologia , Carragenina , Linhagem Celular , Condrócitos/citologia , Adjuvante de Freund , Humanos , Inflamação , Peroxidação de Lipídeos , Masculino , Camundongos , Osteoartrite/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/sangue
7.
Biomolecules ; 13(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36830602

RESUMO

Persistent pain can be managed with opioids, but their use is limited by the onset of tolerance. Ultramicronized N-palmitoylethanolamine (PEA) in vivo delays morphine tolerance with mechanisms that are still unclear. Since glial cells are involved in opioid tolerance and mast cells (MCs) are pivotal targets of PEA, we hypothesized that a potential mechanism by which PEA delays opioid tolerance might depend on the control of the crosstalk between these cells. Morphine treatment (30 µM, 30 min) significantly increased MC degranulation of RBL-2H3 cells, which was prevented by pre-treatment with PEA (100 µM, 18 h), as evaluated by ß-hexosaminidase assay and histamine quantification. The impact of RBL-2H3 secretome on glial cells was studied. Six-hour incubation of astrocytes with control RBL-2H3-conditioned medium, and even more so co-incubation with morphine, enhanced CCL2, IL-1ß, IL-6, Serpina3n, EAAT2 and GFAP mRNA levels. The response was significantly prevented by the secretome from PEA pre-treated RBL-2H3, except for GFAP, which was further upregulated, suggesting a selective modulation of glial signaling. In conclusion, ultramicronized PEA down-modulated both morphine-induced MC degranulation and the expression of inflammatory and pain-related genes from astrocytes challenged with RBL-2H3 medium, suggesting that PEA may delay morphine tolerance, regulating MC-astrocyte crosstalk.


Assuntos
Astrócitos , Morfina , Humanos , Astrócitos/metabolismo , Analgésicos Opioides/metabolismo , Tolerância a Medicamentos , Mastócitos , Dor/metabolismo
8.
J Vasc Res ; 49(3): 221-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22433666

RESUMO

In microcoronary endothelial cells (RCEs) from spontaneously hypertensive rats (SHR), the nitric oxide (NO)/cyclic guanosine monophosphate (GMP)-dependent proteinkinase I (cGKI) pathway cannot regulate the cytosolic calcium ([Ca2+]i) dynamic as in RCEs from Wistar Kyoto rats (WKY). We investigated the altered downstream NO target in SHR cells and, since cGKI expression was low, whether the re-expression of cGKIα in SHR RCEs could restore NO calcium responsiveness. We measured [Ca2+]i dynamic by fura-2 imaging analysis and the cGKI level by RT-PCR and Western blot in SHR and WKY RCEs. Plasmids encoding for enhanced green fluorescence protein or cGKIα-enhanced green fluorescence protein were transiently transfected in SHR RCEs, and [Ca2+]i was evaluated. Angiotensin-II (AT-II) increased [Ca2+]i in a concentration-dependent way in both strains. Whereas in WKY, endogenously produced NO and cyclic GMP analog decreased the AT-II-induced [Ca2+]i transient, they were ineffective in SHR RCEs. The cGKI level was low in SHR cells. However, after cGKIα re-expression, endogenous NO decreased the AT-II-induced [Ca2+]i transient, while endothelial NO synthase and cGKI inhibition prevented it. The low expression of cGKI in SHR accounts for the absent regulation of the agonist-induced [Ca2+]i transient by the NO/cyclic GMP pathway. Studies on cGKI in humans could contribute to a better understanding of cardiovascular pathologies.


Assuntos
Cálcio/metabolismo , Vasos Coronários/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Citosol/metabolismo , Hipertensão/metabolismo , Óxido Nítrico/fisiologia , Angiotensina II/farmacologia , Animais , Células Cultivadas , GMP Cíclico/fisiologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transfecção
9.
Cardiovasc Drugs Ther ; 26(4): 285-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22766583

RESUMO

PURPOSE: Both carbon monoxide (CO) and nitric oxide (NO) are two gaseous molecules performing relevant functions in mammals. In order to better understand their actions in the cardiovascular system, we have investigated the effects of CORM-3, (tricarbonylchloro(glycinato)ruthenium(II), a water soluble CO-releasing molecule and SNAP (S-nitroso-N-acetyl-DL-penicillamine, a well known NO-releasing molecule) on aortas of normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). METHODS: The isometric contraction of angiotensin II (AT-II) and endothelin-1 (ET-1) was evaluated in endothelium-denuded aortic strips. RESULTS: In control conditions, AT-II induced a similar concentration-dependent contraction in both WKY and SHR, while ET-1 was more effective in SHR aortic strips. CORM-3 or SNAP (10(-7)-3 × 10(-4) M) reduced the contraction induced by AT-II or ET-1 in a concentration-dependent way. Whereas the median inhibitory concentration of SNAP was significantly lower in WKY than in SHR, CORM-3 had a similar effect in both strains. The scaffold compound iCORM-3 was ineffective. Pretreatment with an inhibitor of soluble guanylyl cyclase (ODQ, 3 × 10(-6) M) marginally reduced CORM-3 relaxation in both strains, whereas it reduced relaxation induced by SNAP in WKY and, to a lesser extent, in SHR. The benzylindazole derivative YC-1 (10(-6) M), a sensitizer of soluble guanylate cyclase to the action of NO, significantly increased the relaxant effect of SNAP in AT-II precontracted aortic strips. The blocker of calcium-activated potassium channels, charybdotoxin (10(-8) M), reduced the relaxation induced by CORM-3 in both strains. CONCLUSIONS: Different mechanisms seem to be implicated in CO- and NO-mediated vascular relaxation. Since the relaxant properties of CO are conserved in SHR aortas, CORM-3 could be a new potential agent for the treatment of hypertension, when NO donors show sub-optimal or absent responses.


Assuntos
Aorta/efeitos dos fármacos , Monóxido de Carbono/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Compostos Organometálicos/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Angiotensina II/farmacologia , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Charibdotoxina/farmacologia , Endotelina-1/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Guanilato Ciclase/metabolismo , Hipertensão/fisiopatologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Citoplasmáticos e Nucleares/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Guanilil Ciclase Solúvel , Vasoconstrição/efeitos dos fármacos , Água/química
10.
Front Mol Biosci ; 8: 650962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928123

RESUMO

It is known that fructose may contribute to myocardial vulnerability to ischemia/reperfusion (I/R) injury. D-tagatose is a fructose isomer with less caloric value and used as low-calorie sweetener. Here we compared the metabolic impact of fructose or D-tagatose enriched diets on potential exacerbation of myocardial I/R injury. Wistar rats were randomizedly allocated in the experimental groups and fed with one of the following diets: control (CTRL), 30% fructose-enriched (FRU 30%) or 30% D-tagatose-enriched (TAG 30%). After 24 weeks of dietary manipulation, rats underwent myocardial injury caused by 30 min ligature of the left anterior descending (LAD) coronary artery followed by 24 h' reperfusion. Fructose consumption resulted in body weight increase (49%) as well as altered glucose, insulin and lipid profiles. These effects were associated with increased I/R-induced myocardial damage, oxidative stress (36.5%) and inflammation marker expression. TAG 30%-fed rats showed lower oxidative stress (21%) and inflammation in comparison with FRU-fed rats. Besides, TAG diet significantly reduced plasmatic inflammatory cytokines and GDF8 expression (50%), while increased myocardial endothelial nitric oxide synthase (eNOS) expression (59%). Overall, we demonstrated that D-tagatose represents an interesting sugar alternative when compared to its isomer fructose with reduced deleterious impact not only on the metabolic profile but also on the related heart susceptibility to I/R injury.

11.
J Exp Clin Cancer Res ; 40(1): 320, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649573

RESUMO

BACKGROUND: Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients' quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief. In the present study, we have investigated the role of VEGF-A and its receptors, VEGFR-1 and VEGFR-2, in pain signalling and in chemotherapy-induced neuropathy establishment as well as the therapeutic potential of receptor blockade in the management of pain. METHODS: Behavioural and electrophysiological analyses were performed in an in vivo murine model, by using selective receptor agonists, blocking monoclonal antibodies or siRNA-mediated silencing of VEGF-A and VEGFRs. Expression of VEGF-A and VEGFR-1 in astrocytes and neurons was detected by immunofluorescence staining and confocal microscopy analysis. RESULTS: In mice, the intrathecal infusion of VEGF-A (VEGF165 isoforms) induced a dose-dependent noxious hypersensitivity and this effect was mediated by VEGFR-1. Consistently, electrophysiological studies indicated that VEGF-A strongly stimulated the spinal nociceptive neurons activity through VEGFR-1. In the dorsal horn of the spinal cord of animals affected by oxaliplatin-induced neuropathy, VEGF-A expression was increased in astrocytes while VEGFR-1 was mainly detected in neurons, suggesting a VEGF-A/VEGFR-1-mediated astrocyte-neuron cross-talk in neuropathic pain pathophysiology. Accordingly, the selective knockdown of astrocytic VEGF-A by intraspinal injection of shRNAmir blocked the development of oxaliplatin-induced neuropathic hyperalgesia and allodynia. Interestingly, both intrathecal and systemic administration of the novel anti-VEGFR-1 monoclonal antibody D16F7, endowed with anti-angiogenic and antitumor properties, reverted oxaliplatin-induced neuropathic pain. Besides, D16F7 effectively relieved hypersensitivity induced by other neurotoxic chemotherapeutic agents, such as paclitaxel and vincristine. CONCLUSIONS: These data strongly support the role of the VEGF-A/VEGFR-1 system in mediating chemotherapy-induced neuropathic pain at the central nervous system level. Thus, treatment with the anti-VEGFR-1 mAb D16F7, besides exerting antitumor activity, might result in the additional advantage of attenuating neuropathic pain when combined with neurotoxic anticancer agents.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Humanos , Masculino , Camundongos , Transdução de Sinais
12.
J Sex Med ; 7(8): 2698-713, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20412431

RESUMO

INTRODUCTION: In male, lower urinary tract symptoms (LUTS) have been associated, beside benign prostatic hyperplasia, to some unexpected comorbidities (hypogonadism, obesity, metabolic syndrome), which are essentially characterized by an unbalance between circulating androgens/estrogens. Within the bladder, LUTS are linked to RhoA/Rho-kinase (ROCK) pathway overactivity. AIM: To investigate the effects of changing sex steroids on bladder smooth muscle. METHODS: ER α, ER ß, GPR30/GPER1 and aromatase mRNA expression was analyzed in male genitourinary tract tissues, and cells isolated from bladder, prostate, and urethra. Estrogen and G1 effect on RhoA/ROCK signaling output like cell migration, gene expression, and cytoskeletal remodeling, and [Ca(2+) ](i) was also studied in hB cells. Contractile studies on bladder strips from castrated male rats supplemented with estradiol and testosterone was also performed. MAIN OUTCOME MEASURES: The effects of classical (ER α, ER ß) and nonclassical (GPR30/GPER1) estrogen receptor ligands (17 ß-estradiol and G1, respectively) and androgens on RhoA/ROCK-.mediated cell functions were studied in hB cells. Contractility studies were also performed in bladder strips from castrated male rats supplemented with testosterone or estradiol. RESULTS: Aromatase and sex steroid receptors, including GPR30, were expressed in human bladder and mediates several biological functions. Both 17 ß-estradiol and G1 activated calcium transients and induced RhoA/ROCK signaling (cell migration, cytoskeleton remodeling and smooth muscle gene expression). RhoA/ROCK inhibitors blunted these effects. Estrogen-, but not androgen-supplementation to castrated rats increased sensitivity to the ROCK inhibitor, Y-27632 in isolated bladder strips. In hB cells, testosterone elicited effects similar to estrogen, which were abrogated by blocking its aromatization through letrozole. CONCLUSION: Our data indicate for the first time that estrogen-more than androgen-receptors up-regulate RhoA/ROCK signaling. Since an altered estrogen/androgen ratio characterizes conditions, such as aging, obesity and metabolic syndrome, often associated to LUTS, we speculate that a relative hyperestrogenism may induce bladder overactivity through the up-regulation of RhoA/ROCK pathway.


Assuntos
Músculo Liso/fisiopatologia , Hiperplasia Prostática/genética , Hiperplasia Prostática/fisiopatologia , RNA Mensageiro/genética , Obstrução do Colo da Bexiga Urinária/genética , Obstrução do Colo da Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/genética , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/fisiopatologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/fisiologia , Androgênios/sangue , Animais , Aromatase/genética , Aromatase/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/fisiologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/fisiologia , Estrogênios/sangue , Genitália Masculina/fisiopatologia , Humanos , Hipogonadismo/genética , Hipogonadismo/fisiopatologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/fisiopatologia , Microscopia Confocal , Obesidade/genética , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Testosterona/sangue , Regulação para Cima/genética , Regulação para Cima/fisiologia
13.
Pain ; 161(9): 2179-2190, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379223

RESUMO

ABSTRACT: Pharmacological tools for chronic visceral pain management are still limited and inadequate. A3 adenosine receptor (A3AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca2+ channels (Cav2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A3AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A3AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Cav2.2 blocker PD173212, and the clinically used drug linaclotide. A3AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Cav2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A3AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A3AR agonists inhibited Cav2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca2+ current was PD173212-sensitive and prevented by MRS1523. A3AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain.


Assuntos
Canais de Cálcio Tipo N , Dor Visceral , Agonistas do Receptor A3 de Adenosina , Animais , Feminino , Gânglios Espinais , Masculino , Manejo da Dor , Ratos , Dor Visceral/tratamento farmacológico
14.
Am J Physiol Cell Physiol ; 297(4): C1028-40, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19625605

RESUMO

The previously "orphan" G protein-coupled receptor GPR17 is structurally related to both P2Y nucleotide receptors and to receptors for cysteinyl leukotrienes. Genomic analysis revealed two putative open reading frames encoding for a "short" and a "long" receptor isoform of 339- and 367-amino acids, respectively, with the latter displaying a 28-amino acid longer NH(2) terminus. The short isoform has been recently "deorphanized," revealing dual responses to uracil nucleotides and cysteinyl leukotrienes. No information regarding the ligand specificity, tissue distribution, or pathophysiological roles of the long receptor isoform is available. In the present study, we cloned human long-GPR17, determined its tissue distribution, and characterized its pharmacological specificity in 1321N1 cells by [35S]GTPgammaS binding (which measures the ability of G protein-coupled receptor agonists to increase GTP binding to G proteins) and whole cell patch-clamp recording measuring receptor coupling to K+ channels. [35S]GTPgammaS binding in long-GPR17-expressing 1321N1 cells revealed concentration-dependent responses to uracil nucleotides (UDP-galactose = UDP > UDP-glucose) and cysteinyl leukotrienes (LTC4 > LTD4), which were counteracted by a purinergic (cangrelor) and a cysteinyl leukotriene antagonist (montelukast), respectively. The nonhydrolyzable ATP analog ATPgammaS also acted as an antagonist. GPR17 coupled to Gi and, to a lesser extent, Gq proteins. UDP-glucose and LTD(4) also induced increases in overall outward K+ currents, which were antagonized by the purinergic antagonists MRS2179 and cangrelor and by montelukast. We conclude that the previously uncharacterized long-GPR17 isoform is a functional receptor that is stimulated by both uracil nucleotides and cysteinyl leukotrienes. We also show that the signaling pathway of GPR17 involves the generation of outward K+ currents, an important protective mechanism that, in brain, is specifically aimed at reducing neuronal hyperexcitability and resultant neuronal injury.


Assuntos
Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Leucotrienos/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Linhagem Celular Tumoral , Clonagem Molecular , Humanos , Leucotrieno D4/metabolismo , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Ensaio Radioligante , Receptores Acoplados a Proteínas G/genética , Radioisótopos de Enxofre , Difosfato de Uridina/metabolismo , Uridina Difosfato Glucose/metabolismo
15.
J Hepatol ; 50(6): 1102-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19398228

RESUMO

BACKGROUND/AIMS: Hepatic fibrogenesis, a consequence of chronic liver tissue damage, is characterized by activation of the hepatic stellate cells (HSC). Silybin has been shown to exert anti-fibrogenic effects in animal models. However, scant information is available on the fine cellular and molecular events responsible for this effect. The aim of this study was to assess the mechanisms regulating the anti-fibrogenic and anti-inflammatory activity of Silybin. METHODS: Experiments were performed on HSC isolated from human liver and activated by culture on plastic. RESULTS: Silybin was able to inhibit dose-dependently (25-50 microM) growth factor-induced pro-fibrogenic actions of activated human HSC, including cell proliferation (P < 0.001), cell motility (P < 0.001), and de novo synthesis of extracellular matrix components (P < 0.05). Silybin (25-50 microM), inhibited the IL-1-induced synthesis of MCP-1 (P < 0.01) and IL-8 (P < 0.01) showing a potent anti-inflammatory activity. Silybin exerts its effects by directly inhibiting the ERK, MEK and Raf phosphorylation, reducing the activation of NHE1 (Na+/H+ exchanger, P < 0.05) and the IkBalpha phosphorylation. In addition, Silybin was confirmed to act as a potent anti-oxidant agent. CONCLUSION: The results of the study provide molecular insights into the potential therapeutic action of Silybin in chronic liver disease. This action seems to be mostly related to a marked inhibition of the production of pro-inflammatory cytokines, a clear anti-oxidant effect and a reduction of the direct and indirect pro-fibrogenic potential of HSC.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Becaplermina , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/biossíntese , Colágeno Tipo I/biossíntese , DNA/biossíntese , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Proteínas I-kappa B/metabolismo , Interleucina-1beta/farmacologia , Interleucina-8/biossíntese , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Metaloproteinase 2 da Matriz/biossíntese , Modelos Biológicos , Inibidor de NF-kappaB alfa , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-sis , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Silibina , Silimarina/farmacologia
16.
Cardiovasc Diabetol ; 8: 32, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19545435

RESUMO

BACKGROUND: In streptozotocin-injected rats (STZ-rats), we previously demonstrated a role for angiotensin II (AT-II) in cardiac remodelling and insulin resistance partially counteracted by in vivo treatment with losartan, an AT-II receptor antagonist.We now aimed to investigate the effect of treating diabetic STZ-rats with losartan on diabetes vascular response to vasoconstrictors. METHODS: Male Wistar rats were randomly divided in four groups, two of them were assigned to receive losartan in the drinking water (20 mg/kg/day) until the experiment ending (3 weeks afterward). After 1 week, two groups, one of which receiving losartan, were injected in the tail vein with citrate buffer (normoglycemic, N and normoglycemic, losartan-treated, NL). The remaining received a single injection of streptozotocin (50 mg/kg in citrate i.v.) thus becoming diabetic (D) and diabetic losartan-treated (DL). Plasma glycaemia and blood pressure were measured in all animals before the sacrifice (15 days after diabetes induction).In aortic strips isolated from N, NL, D and DL rats we evaluated i) the isometric concentration-dependent contractile response to phenylephrine (Phe) and to AT-II; ii) the RhoA-kinase (ROCK1) activity and expression by enzyme-immunoassay and Western blot respectively. KEY RESULTS: The concentration-dependent contractile effect of Phe was similar in aortas from all groups, whereas at all concentrations tested, AT-II contraction efficacy was 2 and half and 1 and half times higher in D and DL respectively in comparison with N and NL. AT-II contracture was similarly reduced in all groups by AT-II receptor antagonists, irbesartan or irbesartan plus PD123319. HA-1077 (10 microM), an inhibitor of ROCK1 activity, reduced AT-II efficacy (Deltamg/mg tissue w.w.) by -3.5 +/- 1.0, -4.6 +/- 1.9, -22.1 +/- 2.2 and -11.4 +/- 1.3 in N, NL, D and DL respectively). ROCK1 activity and expression were higher in D than in N/NL and DL aortas. CONCLUSION AND IMPLICATIONS: Aortas isolated from STZ-rats present hyper-contracture to AT-II mainly dependent on the up-regulation of ROCK1 expression/activity. In vivo losartan treatment partially corrects AT-II hyper-contracture, limiting the increase in ROCK1 expression/activity. These data offer a new molecular mechanism supporting the rationale for using losartan in the prevention of diabetic vascular complications.


Assuntos
Angiotensina II/metabolismo , Aorta Torácica/metabolismo , Diabetes Mellitus Experimental/metabolismo , Losartan/uso terapêutico , Vasoconstrição/fisiologia , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Angiotensina II/antagonistas & inibidores , Angiotensina II/fisiologia , Animais , Aorta Torácica/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Técnicas In Vitro , Irbesartana , Losartan/farmacologia , Masculino , Ratos , Ratos Wistar , Tetrazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/fisiologia
17.
FASEB J ; 22(9): 3380-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18556460

RESUMO

We hypothesized that circulating polymorphonuclear granulocytes (PMNs), vascular endothelial cells (ECs), and perivascular mast cells (MCs) may initiate and sustain the inflammatory response through the generation of the superoxide anion (O(2)(*-)) by PMNs primed by inflammatory stimuli, which in turn evoked the overexpression of adhesion molecules from ECs and release of histamine by MCs. To pin-point the role of carbon monoxide (CO) in curbing vascular inflammation, we studied the effect of a water-soluble CO-releasing molecule [tricarbonylchloro-glycinate-ruthenium (II); CORM-3] on an experimental model of vascular inflammation. The model consists of coincubating formyl-methionyl peptide (fMLP) -primed human PMNs with rat ECs or with rat MCs. The effects of CORM-3 were evaluated by measuring the generation of O(2)(*-) and the expression of CD11b in fMLP-primed PMNs; the expression of ICAM-1 and CD203c in ECs and MCs, respectively; and the release of histamine from MCs. Our results show that the chemotactic peptide fMLP primes PMNs to generate O(2)(*-) and overexpress CD11b, both events being central to the inflammatory process, while CORM-3 significantly decreases these events (IC(50)=1.66 microM for O(2)(*-) production; 1.20 microM for CD11b expression in human PMNs). The experiments also show that fMLP-primed PMNs increase the CD54 expression by coincubated ECs, and the expression of CD203c and the release of histamine by coincubated MCs. Once again, CORM-3 abolishes these events (IC(50)=6.78 microM for CD54 expression in ECs; 1.18 microM for CD203 expression; 1.15 microM for histamine release in MCs). Thus, CORM-3 exerts a powerful anti-inflammatory action by down-regulating the oxidative burst in PMNs, the overexpression of adhesion molecules in PMNs and ECs, the release of histamine, and the overexpression of an activation marker by MCs.


Assuntos
Células Endoteliais/fisiologia , Mastócitos/fisiologia , Neutrófilos/fisiologia , Compostos Organometálicos/farmacologia , Animais , Sobrevivência Celular , Endotélio Vascular/citologia , Masculino , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Ratos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
18.
Pain ; 160(5): 1103-1118, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31008816

RESUMO

Recently, studies have focused on the antihyperalgesic activity of the A3 adenosine receptor (A3AR) in several chronic pain models, but the cellular and molecular basis of this effect is still unknown. Here, we investigated the expression and functional effects of A3AR on the excitability of small- to medium-sized, capsaicin-sensitive, dorsal root ganglion (DRG) neurons isolated from 3- to 4-week-old rats. Real-time quantitative polymerase chain reaction experiments and immunofluorescence analysis revealed A3AR expression in DRG neurons. Patch-clamp experiments demonstrated that 2 distinct A3AR agonists, Cl-IB-MECA and the highly selective MRS5980, inhibited Ca-activated K (KCa) currents evoked by a voltage-ramp protocol. This effect was dependent on a reduction in Ca influx via N-type voltage-dependent Ca channels, as Cl-IB-MECA-induced inhibition was sensitive to the N-type blocker PD173212 but not to the L-type blocker, lacidipine. The endogenous agonist adenosine also reduced N-type Ca currents, and its effect was inhibited by 56% in the presence of A3AR antagonist MRS1523, demonstrating that the majority of adenosine's effect is mediated by this receptor subtype. Current-clamp recordings demonstrated that neuronal firing of rat DRG neurons was also significantly reduced by A3AR activation in a MRS1523-sensitive but PD173212-insensitive manner. Intracellular Ca measurements confirmed the inhibitory role of A3AR on DRG neuronal firing. We conclude that pain-relieving effects observed on A3AR activation could be mediated through N-type Ca channel block and action potential inhibition as independent mechanisms in isolated rat DRG neurons. These findings support A3AR-based therapy as a viable approach to alleviate pain in different pathologies.


Assuntos
Gânglios Espinais/citologia , Neurônios/metabolismo , Receptor A3 de Adenosina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/farmacologia , Células Cultivadas , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor A3 de Adenosina/genética , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
20.
J Med Chem ; 51(11): 3250-60, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18484716

RESUMO

The synthesis of the Fe(III), Co(II), Mn(II), and Ru(III) complexes with two polyamine-polycarboxylate ligands, N-(2-hydroxyethyl)ethylenediamine-N, N', N'-triacetic acid (H3L1) and ethylene bisglycol tetraacetic acid (H4L2) is reported. Potentiometric studies showed that these ligands form stable complexes in aqueous solution and no metal release occurs, thus accounting for their low toxicity in cultured RAW 264.7 macrophages. X-ray characterization of the [Co(L1)](-) complex showed that binding sites are available at the metal for NO binding. Efficiency of these compounds to bind NO was studied by UV-vis spectrophotometry. Then their NO-scavenging properties were assayed in a cell-free system under physiological conditions, using S-nitroso-N-acetyl-D,L-penicillamine (SNAP) as NO source. The L1 complexes caused the most effective reduction of free NO, [Mn(L1)](-) being the most efficient. Conversely, in NOS II induced RAW 264.7 macrophages, the Ru(III) and Co(II) complexes with L2 were the most effective compounds. [Ru(L2)](-) also afforded significant protection against lipopolysaccharide-induced endotoxic shock in the mouse in vivo.


Assuntos
Quelantes/química , Cobalto , Ácido Edético/análogos & derivados , Ácido Egtázico/análogos & derivados , Ácido Egtázico/química , Ferro , Manganês , Óxido Nítrico/metabolismo , Rutênio , Animais , Linhagem Celular , Quelantes/farmacologia , Cristalografia por Raios X , Ácido Edético/química , Ácido Edético/farmacologia , Ácido Egtázico/farmacologia , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Moleculares , Doadores de Óxido Nítrico/química , Potenciometria , S-Nitroso-N-Acetilpenicilamina/farmacologia , Choque/tratamento farmacológico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa