Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Calcif Tissue Int ; 114(1): 53-59, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925671

RESUMO

The age-related loss of skeletal muscle function starts from midlife and if left unaddressed can lead to an impaired quality of life. A growing body of evidence indicates that mitochondrial dysfunction is causally involved with muscle aging. Muscles are tissues with high metabolic requirements, and contain rich mitochondria supply to support their continual energy needs. Cellular mitochondrial health is maintained by expansing of the mitochondrial pool though mitochondrial biogenesis, by preserving the natural mitochondrial dynamic process, via fusion and fission, and by ensuring the removal of damaged mitochondria through mitophagy. During aging, mitophagy levels decline and negatively impact skeletal muscle performance. Nutritional and pharmacological approaches have been proposed to manage the decline in muscle function due to impaired mitochondria bioenergetics. The natural postbiotic Urolithin A has been shown to promote mitophagy, mitochondrial function and improved muscle function across species in different experimental models and across multiple clinical studies. In this review, we explore the biology of Urolithin A and the clinical evidence of its impact on promoting healthy skeletal muscles during age-associated muscle decline.


Assuntos
Cumarínicos , Mitofagia , Qualidade de Vida , Músculo Esquelético
2.
J Microsc ; 278(2): 89-106, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32277765

RESUMO

Mitochondrial shape and function are known to be linked; therefore, there is a need to combine three-dimensional EM structural analysis with functional analysis. Cytochrome c oxidase labelling is one approach to examine mitochondrial function at the EM level. However, previous efforts to apply this method have had several issues including inconsistent results, disruption to mitochondrial ultrastructure, and a lack of optimisation for volume EM methods. We have used short fixation and microwave processing to address these issues. We show that our method gives consistent cytochrome c oxidase labelling and improves labelling penetration across tissue volume. We also quantify mitochondrial morphology metrics, including in volume EM, to show that ultrastructure is unaltered by the processing. This work represents a technical advance that allows the correlation of mitochondrial function and morphology with greater resolution and volume than has previously been feasible. LAY SUMMARY: Transmission electron microscopy (TEM) is a high-resolution technique used for the study of cells and their components, such as mitochondria. However, the two-dimensional nature of TEM means that quantification of these structures is difficult without making assumptions about their shape; a problem that was solved by the advent of three-dimensional EM approaches. Mitochondrial shape and function are known to be linked therefore there is a need to combine three-dimensional EM structural analysis with functional analysis. To do this we used electron microscopy to visualise a reaction that assesses the activity of cytochrome c oxidase in the mitochondrial respiratory chain. The reaction deposits a dark staining on mitochondrial cristae where cytochrome c oxidase is functioning and a lack of staining where it is not. We first optimised this technique for TEM, showing that the tissue was evenly stained and exhibited no effect on mitochondrial shape when compared to conventionally processed tissue. We then demonstrated that this was also true of a sample processed for three-dimensional EM imaging. This work presents an advance in three-dimensional EM imaging that allows us to look at both mitochondrial function and shape and to detect subtle changes in shape.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Coloração e Rotulagem/métodos , Fixação de Tecidos/métodos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imageamento Tridimensional/métodos , Camundongos
3.
Nat Metab ; 5(12): 2047-2061, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036770

RESUMO

Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.


Assuntos
Envelhecimento , Mitofagia , Humanos , Mitofagia/fisiologia , Envelhecimento/fisiologia , Mitocôndrias/metabolismo , Estresse Oxidativo
4.
iScience ; 26(8): 107475, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37588163

RESUMO

Septic patients frequently develop skeletal muscle wasting and weakness, resulting in severe clinical consequences and adverse outcomes. Sepsis triggers sustained induction of autophagy, a key cellular degradative pathway, in skeletal muscles. However, the impact of enhanced autophagy on sepsis-induced muscle dysfunction remains unclear. Using an inducible and muscle-specific Atg7 knockout mouse model (Atg7iSkM-KO), we investigated the functional importance of skeletal muscle autophagy in sepsis using the cecal ligation and puncture model. Atg7iSkM-KO mice exhibited a more severe phenotype in response to sepsis, marked by severe muscle wasting, hypoglycemia, higher ketone levels, and a decreased in survival as compared to mice with intact Atg7. Sepsis and Atg7 deletion resulted in the accumulation of mitochondrial dysfunction, although sepsis did not further worsen mitochondrial dysfunction in Atg7iSkM-KO mice. Overall, our study demonstrates that autophagy inactivation in skeletal muscles triggers significant worsening of sepsis-induced muscle and metabolic dysfunctions and negatively impacts survival.

5.
Cell Metab ; 34(2): 197-208.e5, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030325

RESUMO

Mitophagy is a quality control mechanism that eliminates damaged mitochondria, yet its significance in mammalian pathophysiology and aging has remained unclear. Here, we report that mitophagy contributes to mitochondrial dysfunction in skeletal muscle of aged mice and human patients. The early disease stage is characterized by muscle fibers with central nuclei, with enhanced mitophagy around these nuclei. However, progressive mitochondrial dysfunction halts mitophagy and disrupts lysosomal homeostasis. Interestingly, activated or halted mitophagy occur in a mosaic manner even in adjacent muscle fibers, indicating cell-autonomous regulation. Rapamycin restores mitochondrial turnover, indicating mTOR-dependence of mitochondrial recycling in advanced disease stage. Our evidence suggests that (1) mitophagy is a hallmark of age-related mitochondrial pathology in mammalian muscle, (2) mosaic halting of mitophagy is a mechanism explaining mosaic respiratory chain deficiency and accumulation of pathogenic mtDNA variants in adult-onset mitochondrial diseases and normal aging, and (3) augmenting mitophagy is a promising therapeutic approach for muscle mitochondrial dysfunction.


Assuntos
Doenças Mitocondriais , Mitofagia , Animais , Humanos , Mamíferos , Camundongos , Mitocôndrias , Doenças Mitocondriais/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo
6.
Trials ; 23(1): 789, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127727

RESUMO

BACKGROUND: Mitochondrial disease is a heterogenous group of rare, complex neurometabolic disorders. Despite their individual rarity, collectively mitochondrial diseases represent the most common cause of inherited metabolic disorders in the UK; they affect 1 in every 4300 individuals, up to 15,000 adults (and a similar number of children) in the UK. Mitochondrial disease manifests multisystem and isolated organ involvement, commonly affecting those tissues with high energy demands, such as skeletal muscle. Myopathy manifesting as fatigue, muscle weakness and exercise intolerance is common and debilitating in patients with mitochondrial disease. Currently, there are no effective licensed treatments and consequently, there is an urgent clinical need to find an effective drug therapy. AIM: To investigate the efficacy of 12-week treatment with acipimox on the adenosine triphosphate (ATP) content of skeletal muscle in patients with mitochondrial disease and myopathy. METHODS: AIMM is a single-centre, double blind, placebo-controlled, adaptive designed trial, evaluating the efficacy of 12 weeks' administration of acipimox on skeletal muscle ATP content in patients with mitochondrial myopathy. Eligible patients will receive the trial investigational medicinal product (IMP), either acipimox or matched placebo. Participants will also be prescribed low dose aspirin as a non-investigational medical product (nIMP) in order to protect the blinding of the treatment assignment. Eighty to 120 participants will be recruited as required, with an interim analysis for sample size re-estimation and futility assessment being undertaken once the primary outcome for 50 participants has been obtained. Randomisation will be on a 1:1 basis, stratified by Fatigue Impact Scale (FIS) (dichotomised as < 40, ≥ 40). Participants will take part in the trial for up to 20 weeks, from screening visits through to follow-up at 16 weeks post randomisation. The primary outcome of change in ATP content in skeletal muscle and secondary outcomes relating to quality of life, perceived fatigue, disease burden, limb function, balance and walking, skeletal muscle analysis and symptom-limited cardiopulmonary fitness (optional) will be assessed between baseline and 12 weeks. DISCUSSION: The AIMM trial will investigate the effect of acipimox on modulating muscle ATP content and whether it can be repurposed as a new treatment for mitochondrial disease with myopathy. TRIAL REGISTRATION: EudraCT2018-002721-29 . Registered on 24 December 2018, ISRCTN 12895613. Registered on 03 January 2019, https://www.isrctn.com/search?q=aimm.


Assuntos
Miopatias Mitocondriais , Doenças Musculares , Adulto , Criança , Humanos , Trifosfato de Adenosina , Aspirina/uso terapêutico , Fadiga , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/tratamento farmacológico , Pirazinas , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Cell Rep ; 36(6): 109509, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380033

RESUMO

The brain's ability to process complex information relies on the constant supply of energy through aerobic respiration by mitochondria. Neurons contain three anatomically distinct compartments-the soma, dendrites, and projecting axons-which have different energetic and biochemical requirements, as well as different mitochondrial morphologies in cultured systems. In this study, we apply quantitative three-dimensional electron microscopy to map mitochondrial network morphology and complexity in the mouse brain. We examine somatic, dendritic, and axonal mitochondria in the dentate gyrus and cornu ammonis 1 (CA1) of the mouse hippocampus, two subregions with distinct principal cell types and functions. We also establish compartment-specific differences in mitochondrial morphology across these cell types between young and old mice, highlighting differences in age-related morphological recalibrations. Overall, these data define the nature of the neuronal mitochondrial network in the mouse hippocampus, providing a foundation to examine the role of mitochondrial morpho-function in the aging brain.


Assuntos
Envelhecimento/fisiologia , Axônios/fisiologia , Dendritos/fisiologia , Hipocampo/fisiologia , Mitocôndrias/metabolismo , Neurônios/citologia , Animais , Região CA1 Hipocampal/fisiologia , Giro Denteado/fisiologia , Feminino , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Frações Subcelulares/metabolismo
8.
Front Physiol ; 10: 420, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114501

RESUMO

Aging is associated with a progressive decline in muscle mass and strength, a process known as sarcopenia. Evidence indicates that mitochondrial dysfunction plays a causal role in sarcopenia and suggests that alterations in mitochondrial dynamics/morphology may represent an underlying mechanism. Caloric restriction (CR) is among the most efficient nonpharmacological interventions to attenuate sarcopenia in rodents and is thought to exert its beneficial effects by improving mitochondrial function. However, CR effects on mitochondrial morphology and dynamics, especially in aging muscle, remain unknown. To address this issue, we investigated mitochondrial morphology and dynamics in the oxidative soleus (SOL) and glycolytic white gastrocnemius (WG) muscles of adult (9-month-old) ad libitum-fed (AL; A-AL), old (22-month-old) AL-fed (O-AL), and old CR (O-CR) rats. We show that CR attenuates the aging-related decline in the muscle-to-body-weight ratio, a sarcopenic index. CR also prevented the effects of aging on muscle fiber type composition in both muscles. With aging, the SOL displayed fragmented SubSarcolemmal (SS) and InterMyoFibrillar (IMF) mitochondria, an effect attenuated by CR. Aged WG displayed enlarged SS and more complex/branched IMF mitochondria. CR had marginal anti-aging effects on WG mitochondrial morphology. In the SOL, DRP1 (pro-fission protein) content was higher in O-AL vs YA-AL, and Mfn2 (pro-fusion) content was higher in O-CR vs A-AL. In the gastrocnemius, Mfn2, Drp1, and Fis1 (pro-fission) contents were higher in O-AL vs A-AL. CR reduced this aging-related increase in Mfn2 and Fis1 content. Overall, these results reveal for the first time that aging differentially impacts mitochondrial morphology and dynamics in different muscle fiber types, by increasing fission/fragmentation in oxidative fibers while enhancing mitochondrial size and branching in glycolytic fibers. Our results also indicate that although CR partially attenuates aging-related changes in mitochondrial dynamics in glycolytic fibers, its anti-aging effect on mitochondrial morphology is restricted to oxidative fibers.

9.
Med Sci (Paris) ; 33(11): 955-962, 2017 Nov.
Artigo em Francês | MEDLINE | ID: mdl-29200393

RESUMO

One of the most obvious and deleterious changes occurring with aging is a progressive loss of skeletal muscle mass and strength, a physiological process named sarcopenia. Amongst the multiple theories that have been put forward to explain sarcopenia, the mitochondrial theory of aging, which postulates that the accumulation of mitochondrial dysfunctions with aging plays a causal role in muscle atrophy, has focused intense research effort and attention in the past decades. The generally accepted view of this theory is that, due to the reactive oxygen species (ROS) production inherent to respiratory chain activity, oxidative damage to mitochondrial proteins, lipids and DNA accumulates with aging. This damage is thought to (i) exacerbate mitochondrial ROS production, (ii) impair the capacity of mitochondria to adequately match the cellular ATP demand and (iii) trigger mitochondrial-mediated apoptosis. Although very appealing, this theory remains controversial. The aims of the present review are (i) to provide the reader with a short, but comprehensive review of the current literature linking mitochondrial dysfunction and sarcopenia and (ii) to briefly discuss the potential mechanisms underlying the accumulation of mitochondrial dysfunction with muscle aging.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Músculo Esquelético/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/fisiologia , DNA/metabolismo , Metabolismo Energético , Humanos , Metabolismo dos Lipídeos , Atrofia Muscular , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio , Sarcopenia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa