RESUMO
BACKGROUND: Transient receptor potential vanilloid type 4 (TRPV4) is a versatile ion channel with diverse roles in immune cells, including macrophages. While its function in inflammation remains debated, we investigated its role in regulating IL-10 production and its impact on macrophage reprogramming during inflammation. METHODS: We investigated the connection between TRPV4 activation and CREB-mediated IL-10 production during inflammation. Notably, this signaling pathway was found to reprogram macrophages and enhance their ability to resist inflammatory damage. The experiments were conducted on primary macrophages and were further corroborated by animal studies. RESULTS: In response to TRPV4 activation during inflammation, we observed a significant increase in intracellular Ca2+ levels, which triggered the activation of the transcription factor CREB, subsequently upregulating IL-10 production. This IL-10 played a pivotal role in reprogramming macrophages to withstand inflammatory damage. Using a mouse model of acute lung injury (ALI), we confirmed that TRPV4 activation during ALI led to IL-10 secretion, but this increase did not significantly contribute to inflammation resolution. Moreover, we found that TRPV4 prevented the accumulation of dysfunctional mitochondria in macrophages through the CREB-IL-10 axis during inflammation. Suppression of CREB or TRPV4 inhibition exacerbated mitochondrial dysfunction, while treatment with recombinant IL-10 mitigated these effects. Additionally, IL-10 induced mitophagy and cleared dysfunctional mitochondria in LPS-exposed cells. CONCLUSION: Our study highlights the essential role of TRPV4 in regulating IL-10 production and mitochondrial health in macrophages during inflammation. These findings contribute to understand the role of TRPV4 in immune responses and suggest potential therapeutic targets for modulating inflammation-induced cellular dysfunction.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Inflamação , Interleucina-10 , Macrófagos , Camundongos Endogâmicos C57BL , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inflamação/metabolismo , Masculino , Cálcio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Células Cultivadas , Lipopolissacarídeos/farmacologiaRESUMO
Idiopathic Pulmonary Fibrosis (IPF) is a progressively fatal and incurable disease characterized by the loss of alveolar structures, increased epithelial-mesenchymal transition (EMT), and aberrant tissue repair. In this study, we investigated the role of Nuclear Factor I-B (NFIB), a transcription factor critical for lung development and maturation, in IPF. Using both human lung tissue samples from patients with IPF, and a mouse model of lung fibrosis induced by bleomycin, we showed that there was a significant reduction of NFIB both in the lungs of patients and mice with IPF. Furthermore, our in vitro experiments using cultured human lung cells demonstrated that the loss of NFIB was associated with the induction of EMT by transforming growth factor beta (TGF-ß). Knockdown of NFIB promoted EMT, while overexpression of NFIB suppressed EMT and attenuated the severity of bleomycin-induced lung fibrosis in mice. Mechanistically, we identified post-translational regulation of NFIB by miR-326, a miRNA with anti-fibrotic effects that is diminished in IPF. Specifically, we showed that miR-326 stabilized and increased the expression of NFIB through its 3'UTR target sites for Human antigen R (HuR). Moreover, treatment of mice with either NFIB plasmid or miR-326 reversed airway collagen deposition and fibrosis. In conclusion, our study emphasizes the critical role of NFIB in lung development and maturation, and its reduction in IPF leading to EMT and loss of alveolar structures. Our study highlights the potential of miR-326 as a therapeutic intervention for IPF. The schema shows the role of NFIB in maintaining the normal epithelial cell characteristics in the lungs and how its reduction leads to a shift towards mesenchymal cell-like features and pulmonary fibrosis. A In normal lungs, NFIB is expressed abundantly in the epithelial cells, which helps in maintaining their shape, cell polarity and adhesion molecules. However, when the lungs are exposed to factors that induce pulmonary fibrosis, such as bleomycin, or TGF-ß, the epithelial cells undergo epithelial to mesenchymal transition (EMT), which leads to a decrease in NFIB. B The mesenchymal cells that arise from EMT appear as spindle-shaped with loss of cell junctions, increased cell migration, loss of polarity and expression of markers associated with mesenchymal cells/fibroblasts. C We designed a therapeutic approach that involves exogenous administration of NFIB in the form of overexpression plasmid or microRNA-326. This therapeutic approach decreases the mesenchymal cell phenotype and restores the epithelial cell phenotype, thus preventing the development or progression of pulmonary fibrosis.
Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Camundongos , Animais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição NFI/farmacologia , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Bleomicina/toxicidadeRESUMO
N-formyl pyrazoline derivatives (3a-3l) were designed and synthesized via Michael addition reaction through cyclization of chalcones with hydrazine hydrate in presence of formic acid. The structural elucidation of N-formyl pyrazoline derivatives was carried out by various spectroscopic techniques such as 1H, 13C NMR, FT-IR, UV-visible spectroscopy, mass spectrometry and elemental analysis. Anticancer activity of the pyrazoline derivatives (3a-3l) was evaluated against human lung cancer (A549), fibrosarcoma cell lines (HT1080) and human primary normal lung cells (HFL-1) by MTT assay. The results of anticancer activity showed that potent analogs 3b and 3d exhibited promising activity against A549 (IC50 = 12.47 ± 1.08 and 14.46 ± 2.76 µM) and HT1080 (IC50 = 11.40 ± 0.66 and 23.74 ± 13.30 µM) but low toxic against the HFL-1 (IC50 = 116.47 ± 43.38 and 152.36 ± 22.18 µM). The anticancer activity of potent derivatives (3b and 3d) against A549 cancer cell line was further confirmed by flow cytometry based approach. DNA binding interactions of the pyrazoline derivatives 3b and 3d have been carried out with calf thymus DNA (Ct-DNA) using absorption, fluorescence and viscosity measurements, circular dichroism and cyclic voltammetry. Antioxidant potential of N-formyl pyrazoline derivatives (3a-3l) has been also estimated through DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical and H2O2. Results revealed that all the compounds exhibited significant antioxidant activity. In silico molecular modelling and ADMET properties of pyrazoline derivatives were also studied using PyRx software against topoisomerase II receptor with PDB ID: 1ZXM to explore their best hits. MD simulation of 3b and 3d was also carried out with topoisomerase II for structure-function correlation in a protein. HuTopoII inhibitory activity of the analogs (3a-3l) was examined by relaxation assay at varying concentrations 100-1000 µM.
Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , DNA/química , Pirazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Sítios de Ligação , Compostos de Bifenilo/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Picratos/antagonistas & inibidores , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-AtividadeRESUMO
The global burden of disease caused by a respiratory syncytial virus (RSV) is becoming more widely recognized in young children and adults. Heparan sulfate helps in attaching the virion through G protein with the host cell membrane. In this study, we examined the structural changes of ectodomain G protein (edG) in a wide pH range. The absorbance results revealed that protein maintains its tertiary structure at physiological and highly acidic and alkaline pH. However, visible aggregation of protein was observed in mild acidic pH. The intrinsic fluorescence study shows no significant change in the λmax except at pH 12.0. The ANS fluorescence of edG at pH 2.0 and 3.0 forms an acid-induced molten globule-like state. The denaturation transition curve monitored by fluorescence spectroscopy revealed that urea and GdmCl induced denaturation native (N) â denatured (D) state follows a two-state process. The fluorescence quenching, molecular docking, and 50 ns simulation measurements suggested that heparan sulfate showed excellent binding affinity to edG. Our binding study provides a preliminary insight into the interaction of edG to the host cell membrane via heparan sulfate. This binding can be inhibited using experimental approaches at the molecular level leading to the prevention of effective host-pathogen interaction.
Assuntos
Domínio Catalítico , Heparitina Sulfato/metabolismo , Interações Hospedeiro-Patógeno , Simulação de Acoplamento Molecular/métodos , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Membrana Celular/metabolismo , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Espectrometria de Fluorescência/métodos , Ureia/farmacologiaRESUMO
Zika virus is an arthropod-borne re-emerging pathogen associated with the global pandemic of 2015-2016. The devastating effect of Zika viral infection is reflected by its neurological manifestations such as microcephaly in newborns. This scenario evoked our interest to uncover the neurotropic localization, multiplication of the virus, and the mechanism of microcephaly. The present report provides an overview of a possible molecular mechanism of Zika virus-induced microcephaly based on recent publications. Transplacental transmission of Zika viral infection from mother to foetus during the first trimester of pregnancy results in propagation of the virus in human neural progenitor cells (hNPCs), where entry is facilitated by the receptor (AXL protein) leading to the alteration of signalling and immune pathways in host cells. Further modification of the viral-induced TLR3-mediated immune network in the infected hNPCs affects viral replication. Downregulation of neurogenesis and upregulation of apoptosis in hNPCs leads to cell cycle arrest and death of the developing neurons. In addition, it is likely that the environmental, physiological, immunological, and genetic factors that determine in utero transmission of Zika virus are also involved in neurotropism. Despite the global concern regarding the Zika-mediated epidemic, the precise molecular mechanism of neuropathogenesis remains elusive.
Assuntos
Microcefalia/etiologia , Células-Tronco Neurais/virologia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/complicações , Zika virus/fisiologia , Apoptose , Feminino , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Microcefalia/fisiopatologia , Microcefalia/virologia , Células-Tronco Neurais/fisiologia , Neurogênese , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Virais/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Replicação Viral , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Receptor Tirosina Quinase AxlRESUMO
Oral cancer is a global health challenge with a difficult histopathological diagnosis. The accurate histopathological interpretation of oral cancer tissue samples remains difficult. However, early diagnosis is very challenging due to a lack of experienced pathologists and inter- observer variability in diagnosis. The application of artificial intelligence (deep learning algorithms) for oral cancer histology images is very promising for rapid diagnosis. However, it requires a quality annotated dataset to build AI models. We present ORCHID (ORal Cancer Histology Image Database), a specialized database generated to advance research in AI-based histology image analytics of oral cancer and precancer. The ORCHID database is an extensive multicenter collection of high-resolution images captured at 1000X effective magnification (100X objective lens), encapsulating various oral cancer and precancer categories, such as oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC). Additionally, it also contains grade-level sub-classifications for OSCC, such as well- differentiated (WD), moderately-differentiated (MD), and poorly-differentiated (PD). The database seeks to aid in developing innovative artificial intelligence-based rapid diagnostics for OSMF and OSCC, along with subtypes.
Assuntos
Inteligência Artificial , Carcinoma de Células Escamosas , Neoplasias Bucais , Fibrose Oral Submucosa , Fibrose Oral Submucosa/diagnóstico por imagem , Fibrose Oral Submucosa/patologia , Humanos , Neoplasias Bucais/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico por imagem , Aprendizado Profundo , Bases de Dados FactuaisRESUMO
Mesenchymal stem cell (MSC) transplantation alleviates metabolic defects in diseased recipient cells by intercellular mitochondrial transport (IMT). However, the effect of host metabolic conditions on IMT and thereby on the therapeutic efficacy of MSCs has largely remained unexplored. Here we found impaired mitophagy, and reduced IMT in MSCs derived from high-fat diet (HFD)-induced obese mouse (MSC-Ob). MSC-Ob failed to sequester their damaged mitochondria into LC3-dependent autophagosomes due to decrease in mitochondrial cardiolipin content, which we propose as a putative mitophagy receptor for LC3 in MSCs. Functionally, MSC-Ob exhibited diminished potential to rescue mitochondrial dysfunction and cell death in stress-induced airway epithelial cells. Pharmacological modulation of MSCs enhanced cardiolipin-dependent mitophagy and restored their IMT ability to airway epithelial cells. Therapeutically, these modulated MSCs attenuated features of allergic airway inflammation (AAI) in two independent mouse models by restoring healthy IMT. However, unmodulated MSC-Ob failed to do so. Notably, in human (h)MSCs, induced metabolic stress associated impaired cardiolipin-dependent mitophagy was restored upon pharmacological modulation. In summary, we have provided the first comprehensive molecular understanding of impaired mitophagy in obese-derived MSCs and highlight the importance of pharmacological modulation of these cells for therapeutic intervention. A MSCs obtained from (HFD)-induced obese mice (MSC-Ob) show underlying mitochondrial dysfunction with a concomitant decrease in cardiolipin content. These changes prevent LC3-cardiolipin interaction, thereby reducing dysfunctional mitochondria sequestration into LC3-autophagosomes and thus impaired mitophagy. The impaired mitophagy is associated with reduced intercellular mitochondrial transport (IMT) via tunneling nanotubes (TNTs) between MSC-Ob and epithelial cells in co-culture or in vivo. B Pyrroloquinoline quinone (PQQ) modulation in MSC-Ob restores mitochondrial health, cardiolipin content, and thereby sequestration of depolarized mitochondria into the autophagosomes to alleviate impaired mitophagy. Concomitantly, MSC-Ob shows restoration of mitochondrial health upon PQQ treatment (MSC-ObPQQ). During co-culture with epithelial cells or transplantation in vivo into the mice lungs, MSC-ObPQQ restores IMT and prevents epithelial cell death. C Upon transplantation in two independent allergic airway inflammatory mouse models, MSC-Ob failed to rescue the airway inflammation, hyperactivity, metabolic changes in epithelial cells. D PQQ modulated MSCs restored these metabolic defects and restored lung physiology and airway remodeling parameters.
Assuntos
Cardiolipinas , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Cardiolipinas/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Obesidade/metabolismoRESUMO
[This corrects the article DOI: 10.1021/acsomega.2c02033.].
RESUMO
To discover anticancer drugs with novel structures and expand our research scope, pyrazoline derivatives (3a-3l) were designed and synthesized through cyclization of chalcones with thiosemicarbazide/semicarbazide in CH3COOH as a solvent. All newly synthesized pyrazoline derivatives were fully characterized using several spectroscopic experiments such as 1H, 13C NMR, FT-IR spectroscopy, and mass analysis. By HPLC, the purity of all analogs was found above 95% and both lead compounds (3a and 3h) were also validated by HRMS. Anticancer activity of synthesized pyrazoline derivatives (3a-3l) was investigated by the MTT assay against the human lung cancer cell (A549), human cervical cancer cell (HeLa), and human primary normal lung cells (HFL-1). Staurosporine (STS) was used as a standard drug. The anticancer results showed that two potent analogs 3a and 3h exhibit excellent activity against A549 (IC50 = 13.49 ± 0.17 and 22.54 ± 0.25 µM) and HeLa cells (IC50 = 17.52 ± 0.09 and 24.14 ± 0.86 µM) and low toxicity against the HFL-1 (IC50 = 114.50 ± 0.01 and 173.20 ± 10 µM). The flow cytometry was further used to confirm the anticancer activity of potent derivatives against the A549 cancer cell line. DNA binding interaction of anticancer agents 3a and 3h with Ct-DNA has been carried out by absorption, fluorescence, EtBr (dye displacement assay), circular dichroism, cyclic voltammetry and time-resolved fluorescence, which showed noncovalent binding mode of interaction. Anticancer activity of both lead compounds (3a and 3h) may be attributed to DNA binding. The evaluation of the antioxidant potential of pyrazoline analogs 3a and 3h by 2,2-diphenyl-1-picrylhydrazyl free radical showed promising antioxidant activity with IC50 values of 0.132 ± 0.012 and 0.215 ± 0.025 µg/mL, respectively. In silico molecular docking of pyrazoline derivatives was also performed using autodock vina software against the DNA hexamer with PDB ID: 1Z3F and ADMET properties to explore their best hits.
RESUMO
Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.
Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , DNA Mitocondrial , Proteínas não Estruturais Virais/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosfoproteínas/metabolismo , SARS-CoV-2RESUMO
The classical necroptosis signaling is mediated by death receptors (DRs) that work in synergy with traditional caspase inhibitory signals. Currently, potential therapeutic molecules are in various phases of clinical trials for a spectrum of pathological conditions associated with necroptosis. However, a non-classical model of necroptosis has also emerged over the last decade with a relatively unexplored molecular mechanism. Although in vitro studies and preclinical models have shown its close association with mitochondrial dysfunction (mito-dysfunction), contradictory reports have emerged which complicate its definitiveness. Though impaired mitochondrial calcium ([Ca2+]m) handling is established in necrotic cell death, how this interplay regulates necroptosis is yet to be elucidated. Taking these questions into consideration, we have discussed various molecular aspects of necroptosis with the emerging role of mito-dysfunction. Based on the central role of altered [Ca2+]m handling in mito-dysfunction mediated necroptosis, we have provided a comprehensive molecular insight into this emerging paradigm. Potential reasons for the contradictory findings regarding the role of mito-dysfunction in necroptosis in general and mitochondrial-dependent necroptosis in specific are discussed. We also provide insights into the current understanding of how [Ca2+]m can be a critical determinant in deciding the cell fate under certain pathological conditions, while under others it may be dispensable. Lastly, we have highlighted the key molecular targets which have a direct implication for therapeutic intervention in conditions that are associated with impaired [Ca2+]m handling and cell death by necroptosis.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , NecroptoseRESUMO
A major bottleneck in scaling-up COVID-19 testing is the need for sophisticated instruments and well-trained healthcare professionals, which are already overwhelmed due to the pandemic. Moreover, the high-sensitive SARS-CoV-2 diagnostics are contingent on an RNA extraction step, which, in turn, is restricted by constraints in the supply chain. Here, we present CASSPIT (Cas13 Assisted Saliva-based & Smartphone Integrated Testing), which will allow direct use of saliva samples without the need for an extra RNA extraction step for SARS-CoV-2 detection. CASSPIT utilizes CRISPR-Cas13a based SARS-CoV-2 RNA detection, and lateral-flow assay (LFA) readout of the test results. The sample preparation workflow includes an optimized chemical treatment and heat inactivation method, which, when applied to COVID-19 clinical samples, showed a 97% positive agreement with the RNA extraction method. With CASSPIT, LFA based visual limit of detection (LoD) for a given SARS-CoV-2 RNA spiked into the saliva samples was ~200 copies; image analysis-based quantification further improved the analytical sensitivity to ~100 copies. Upon validation of clinical sensitivity on RNA extraction-free saliva samples (n = 76), a 98% agreement between the lateral-flow readout and RT-qPCR data was found (Ct<35). To enable user-friendly test results with provision for data storage and online consultation, we subsequently integrated lateral-flow strips with a smartphone application. We believe CASSPIT will eliminate our reliance on RT-qPCR by providing comparable sensitivity and will be a step toward establishing nucleic acid-based point-of-care (POC) testing for COVID-19.
Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Sistemas CRISPR-Cas , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Saliva/química , Humanos , Técnicas de Diagnóstico Molecular/métodos , Testes Imediatos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Sensibilidade e Especificidade , Smartphone , Manejo de Espécimes/métodos , Fluxo de TrabalhoRESUMO
BACKGROUND: Oral submucous fibrosis (OSMF) is a premalignant condition mainly caused by areca nut chewing and is characterized by progressive fibrosis of submucosal tissues and epithelial atrophy. Activation of transforming growth factor beta (TGF-ß) signaling is considered main causative event for increased collagen production and fibrosis. In this study, molecular pathogenesis of OSMF was investigated based on the expression of the TGF-ß genes in OSMF tissues compared to normal controls. METHODS: A total of 33 OSMF and 10 normal tissues were collected from patients and their clinic-epidemiological data was recorded. The expression of TGF-ß isoform genes- TGF ß1, TGF ß2, TGF ß3 and its receptor TGF ßR1, TGF ßR2 was studied by real time polymerase chain reaction (PCR). Comparison of the expression of these genes among normal controls and OSMF patients was done. The PCR results were confirmed by histopathological and immunohistochemical staining. RESULTS: The histological changes included atrophic epithelium, loss of rete ridges, presence of inflammatory cells and dense collagen bundles in connective tissue. PCR showed statistically significant upregulation of TGF-ß isoforms in OSMF as compared to normal tissues. Of the three isoforms, maximum fold change was observed in TGF-ß1. Similarly, both TGF-ßR1 and TGF-ßR2 were found to be elevated in OSMF tissues compared to normal. The semi-quantitative analysis by immunohistochemical staining revealed statistically significant difference between normal and OSMF tissues. CONCLUSION: TGF-ß signaling plays a major role in the molecular pathogenesis of OSMF as shown by increased mRNA expression of all the three TGF-ß isotypes and their receptors.