Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Semin Cancer Biol ; 98: 51-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135020

RESUMO

CDK4, along with its regulatory subunit, cyclin D, drives the transition from G1 to S phase, during which DNA replication and metabolic activation occur. In this canonical pathway, CDK4 is essentially a transcriptional regulator that acts through phosphorylation of retinoblastoma protein (RB) and subsequent activation of the transcription factor E2F, ultimately triggering the expression of genes involved in DNA synthesis and cell cycle progression to S phase. In this review, we focus on the newly reported functions of CDK4, which go beyond direct regulation of the cell cycle. In particular, we describe the extranuclear roles of CDK4, including its roles in the regulation of metabolism, cell fate, cell dynamics and the tumor microenvironment. We describe direct phosphorylation targets of CDK4 and decipher how CDK4 influences these physiological processes in the context of cancer.


Assuntos
Ciclinas , Neoplasias , Humanos , Ciclinas/genética , Ciclinas/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Ciclina D/metabolismo , Fosforilação , Ciclo Celular/genética , Neoplasias/genética , Proteínas de Ciclo Celular/metabolismo , Microambiente Tumoral
3.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580088

RESUMO

Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas. This dual role warrants a detailed investigation of how E2F1 loss impacts metabolic pathways related to cancer progression. Our data indicate that E2F1 binds to the promoter of several glutamine metabolism-related genes. Interestingly, the expression of genes in the glutamine metabolic pathway were increased in mouse embryonic fibroblasts (MEFs) lacking E2F1. In addition, we confirm that E2f1-/- MEFs are more efficient in metabolizing glutamine and producing glutamine-derived precursors for proliferation. Mechanistically, we observe a co-occupancy of E2F1 and MYC on glutamine metabolic promoters, increased MYC binding after E2F1 depletion and that silencing of MYC decreased the expression of glutamine-related genes in E2f1-/- MEFs. Analyses of transcriptomic profiles in 29 different human cancers identified uterine sarcoma that showed a negative correlation between E2F1 and glutamine metabolic genes. CRISPR/Cas9 knockout of E2F1 in the uterine sarcoma cell line SK-UT-1 confirmed elevated glutamine metabolic gene expression, increased proliferation and increased MYC binding to glutamine-related promoters upon E2F1 loss. Together, our data suggest a crucial role of E2F1 in energy metabolism and metabolic adaptation in uterine sarcoma cells.


Assuntos
Fator de Transcrição E2F1 , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Glutamina , Neoplasias Uterinas , Animais , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Glutamina/metabolismo , Camundongos , Feminino , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Fibroblastos/metabolismo , Humanos , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma/patologia , Camundongos Knockout , Linhagem Celular Tumoral , Proliferação de Células , Regiões Promotoras Genéticas
4.
iScience ; 27(8): 110510, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39175772

RESUMO

The physical connection between mitochondria and endoplasmic reticulum (ER) is an essential signaling hub to ensure organelle and cellular functions. In skeletal muscle, ER-mitochondria calcium (Ca2+) signaling is crucial to maintain cellular homeostasis during physical activity. High expression of BCL2L13, a member of the BCL-2 family, was suggested as an adaptive response in endurance-trained human subjects. In adult zebrafish, we found that the loss of Bcl2l13 impairs skeletal muscle structure and function. Ca2+ signaling is altered in Bcl2l13 knockout animals and mitochondrial complexes activity is decreased. Organelle fractioning in mammalian cells shows BCL2L13 at mitochondria, ER, and mitochondria-associated membranes. ER-mitochondria contact sites number is not modified by BCL2L13 modulation, but knockdown of BCL2L13 in C2C12 cells changes cytosolic Ca2+ release and mitochondrial Ca2+ uptake. This suggests that BCL2L13 interaction with mitochondria and ER, and its role in Ca2+ signaling, contributes to proper skeletal muscle function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa