Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Nucleic Acids Res ; 52(D1): D311-D321, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37602392

RESUMO

Discoveries over the recent decade have demonstrated the unexpected diversity of telomere DNA motifs in nature. However, currently available resources, 'Telomerase database' and 'Plant rDNA database', contain just fragments of all relevant literature published over decades of telomere research as they have a different primary focus and limited updates. To fill this gap, we gathered data about telomere DNA sequences from a thorough literature screen as well as by analysing publicly available NGS data, and we created TeloBase (http://cfb.ceitec.muni.cz/telobase/) as a comprehensive database of information about telomere motif diversity. TeloBase is supplemented by internal taxonomy utilizing popular on-line taxonomic resources that enables in-house data filtration and graphical visualisation of telomere DNA evolutionary dynamics in the form of heat tree plots. TeloBase avoids overreliance on administrators for future data updates by having a simple form and community-curation system for application and approval, respectively, of new telomere sequences by users, which should ensure timeliness of the database and topicality. To demonstrate TeloBase utility, we examined telomere motif diversity in species from the fungal genus Aspergillus, and discovered (TTTATTAGGG)n sequence as a putative telomere motif in the plant family Chrysobalanaceae. This was bioinformatically confirmed by analysing template regions of identified telomerase RNAs.


Assuntos
Bases de Dados Genéticas , Telomerase , Motivos de Nucleotídeos , Plantas/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo
2.
Plant J ; 118(6): 1922-1936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493352

RESUMO

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fator 1 de Modelagem da Cromatina , Proteínas de Ligação a DNA , Homeostase do Telômero , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Mutação , Telômero/metabolismo , Telômero/genética , Cromossomos de Plantas/metabolismo
3.
Nucleic Acids Res ; 51(1): 420-433, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546771

RESUMO

In contrast to the catalytic subunit of telomerase, its RNA subunit (TR) is highly divergent in size, sequence and biogenesis pathways across eukaryotes. Current views on TR evolution assume a common origin of TRs transcribed with RNA polymerase II in Opisthokonta (the supergroup including Animalia and Fungi) and Trypanosomida on one hand, and TRs transcribed with RNA polymerase III under the control of type 3 promoter, found in TSAR and Archaeplastida supergroups (including e.g. ciliates and Viridiplantae taxa, respectively). Here, we focus on unknown TRs in one of the largest Animalia order - Hymenoptera (Arthropoda) with more than 300 available representative genomes. Using a combination of bioinformatic and experimental approaches, we identify their TRs. In contrast to the presumed type of TRs (H/ACA box snoRNAs transcribed with RNA Polymerase II) corresponding to their phylogenetic position, we find here short TRs of the snRNA type, likely transcribed with RNA polymerase III under the control of the type 3 promoter. The newly described insect TRs thus question the hitherto assumed monophyletic origin of TRs across Animalia and point to an evolutionary switch in TR type and biogenesis that was associated with the divergence of Arthropods.


Assuntos
Himenópteros , Telomerase , Animais , Telomerase/genética , Telomerase/metabolismo , Himenópteros/genética , Filogenia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Conformação de Ácido Nucleico , RNA/genética , Plantas/genética , Eucariotos/genética
4.
Plant J ; 114(2): 325-337, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752686

RESUMO

The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Células Germinativas Vegetais/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Pólen , Reprodução , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo
5.
Plant Mol Biol ; 114(3): 56, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743198

RESUMO

Most eukaryotic organisms employ a telomerase complex for the maintenance of chromosome ends. The core of this complex is composed of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) subunits. The TERT reverse transcriptase (RT) domain synthesises telomeric DNA using the TR template sequence. The other TERT domains contribute to this process in different ways. In particular, the TERT RNA-binding domain (TRBD) interacts with specific TR motif(s). Using a yeast 3-hybrid system, we show the critical role of Arabidopsis thaliana (At) TRBD and embryophyta-conserved KRxR motif in the unstructured linker preceding the TRBD domain for binding to the recently identified AtTR subunit. We also show the essential role of the predicted P4 stem and pseudoknot AtTR structures and provide evidence for the binding of AtTRBD to pseudoknot and KRxR motif stabilising interaction with the P4 stem structure. Our results thus provide the first insight into the core part of the plant telomerase complex.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Telomerase , Telomerase/genética , Telomerase/metabolismo , Telomerase/química , Arabidopsis/genética , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , RNA/metabolismo , RNA/genética , Técnicas do Sistema de Duplo-Híbrido , RNA de Plantas/genética , RNA de Plantas/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica
6.
J Exp Bot ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373206

RESUMO

Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.

7.
J Cell Sci ; 134(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350964

RESUMO

Analysis of histone variants and epigenetic marks is dominated by genome-wide approaches in the form of chromatin immunoprecipitation-sequencing (ChIP-seq) and related methods. Although uncontested in their value for single-copy genes, mapping the chromatin of DNA repeats is problematic for biochemical techniques that involve averaging of cell populations or analysis of clusters of tandem repeats in a single-cell analysis. Extending chromatin and DNA fibers allows us to study the epigenetics of individual repeats in their specific chromosomal context, and thus constitutes an important tool for gaining a complete understanding of the epigenetic organization of genomes. We report that using an optimized fiber extension protocol is essential in order to obtain more reproducible data and to minimize the clustering of fibers. We also demonstrate that the use of super-resolution microscopy is important for reliable evaluation of the distribution of histone modifications on individual fibers. Furthermore, we introduce a custom script for the analysis of methylation levels on DNA fibers and apply it to map the methylation of telomeres, ribosomal genes and centromeres.


Assuntos
Metilação de DNA , Microscopia , Cromatina/genética , Imunoprecipitação da Cromatina , DNA/genética , Metilação de DNA/genética
8.
New Phytol ; 239(6): 2353-2366, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391893

RESUMO

Telomerase, telomeric DNA and associated proteins together represent a complex, finely tuned and functionally conserved mechanism that ensures genome integrity by protecting and maintaining chromosome ends. Changes in its components can threaten an organism's viability. Nevertheless, molecular innovation in telomere maintenance has occurred multiple times during eukaryote evolution, giving rise to species/taxa with unusual telomeric DNA sequences, telomerase components or telomerase-independent telomere maintenance. The central component of telomere maintenance machinery is telomerase RNA (TR) as it templates telomere DNA synthesis, its mutation can change telomere DNA and disrupt its recognition by telomere proteins, thereby leading to collapse of their end-protective and telomerase recruitment functions. Using a combination of bioinformatic and experimental approaches, we examine a plausible scenario of evolutionary changes in TR underlying telomere transitions. We identified plants harbouring multiple TR paralogs whose template regions could support the synthesis of diverse telomeres. In our hypothesis, formation of unusual telomeres is associated with the occurrence of TR paralogs that can accumulate mutations, and through their functional redundancy, allow for the adaptive evolution of the other telomere components. Experimental analyses of telomeres in the examined plants demonstrate evolutionary telomere transitions corresponding to TR paralogs with diverse template regions.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , RNA/genética , RNA/metabolismo , Plantas/metabolismo
9.
Plant Physiol ; 189(4): 2259-2280, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567489

RESUMO

Plant adjustment to environmental changes involves complex crosstalk between extrinsic and intrinsic cues. In the past two decades, extensive research has elucidated the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and the phytohormone auxin in thermomorphogenesis. In this study, we identified a previously unexplored role of jasmonate (JA) signaling components, the Mediator complex, and their integration with auxin signaling during thermomorphogenesis in Arabidopsis (Arabidopsis thaliana). Warm temperature induces expression of JA signaling genes including MYC2, but, surprisingly, this transcriptional activation is not JA dependent. Warm temperature also promotes accumulation of the JA signaling receptor CORONATINE INSENSITIVE1 (COI1) and degradation of the JA signaling repressor JASMONATE-ZIM-DOMAIN PROTEIN9, which probably leads to de-repression of MYC2, enabling it to contribute to the expression of MEDIATOR SUBUNIT17 (MED17). In response to warm temperature, MED17 occupies the promoters of thermosensory genes including PIF4, YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE19 (IAA19), and IAA29. Moreover, MED17 facilitates enrichment of H3K4me3 on the promoters of PIF4, YUC8, IAA19, and IAA29 genes. Interestingly, both occupancy of MED17 and enrichment of H3K4me3 on these thermomorphogenesis-related promoters are dependent on PIF4 (or PIFs). Altered accumulation of COI1 under warm temperature in the med17 mutant suggests the possibility of a feedback mechanism. Overall, this study reveals the role of the Mediator complex as an integrator of JA and auxin signaling pathways during thermomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Complexo Mediador/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais
10.
Nucleic Acids Res ; 49(13): 7680-7694, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34181710

RESUMO

The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.


Assuntos
Evolução Molecular , RNA de Plantas/química , RNA de Plantas/genética , RNA/química , RNA/genética , Telomerase/química , Telomerase/genética , Mutação , Conformação de Ácido Nucleico , RNA/biossíntese , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , RNA de Plantas/biossíntese , Alinhamento de Sequência , Telomerase/biossíntese , Telômero/química , Transcrição Gênica , Transcriptoma , Viridiplantae/genética
11.
Plant Physiol ; 186(4): 1893-1907, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618100

RESUMO

The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Replicação do DNA , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myb/genética , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Genoma de Planta , Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
EMBO Rep ; 21(8): e49719, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32627357

RESUMO

Guard cells on the leaf epidermis regulate stomatal opening for gas exchange between plants and the atmosphere, allowing a balance between photosynthesis and transpiration. Given that guard cells possess several characteristics of sink tissues, their metabolic activities should largely depend on mesophyll-derived sugars. Early biochemical studies revealed sugar uptake into guard cells. However, the transporters that are involved and their relative contribution to guard cell function are not yet known. Here, we identified the monosaccharide/proton symporters Sugar Transport Protein 1 and 4 (STP1 and STP4) as the major plasma membrane hexose sugar transporters in the guard cells of Arabidopsis thaliana. We show that their combined action is required for glucose import to guard cells, providing carbon sources for starch accumulation and light-induced stomatal opening that are essential for plant growth. These findings highlight mesophyll-derived glucose as an important metabolite connecting stomatal movements with photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carbono , Glucose , Luz , Estômatos de Plantas
13.
BMC Bioinformatics ; 22(1): 145, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752601

RESUMO

BACKGROUND: Telomeres, nucleoprotein structures comprising short tandem repeats and delimiting the ends of linear eukaryotic chromosomes, play an important role in the maintenance of genome stability. Therefore, the determination of the length of telomeres is of high importance for many studies. Over the last years, new methods for the analysis of the length of telomeres have been developed, including those based on PCR or analysis of NGS data. Despite that, terminal restriction fragment (TRF) method remains the gold standard to this day. However, this method lacks universally accepted and precise tool capable to analyse and statistically evaluate TRF results. RESULTS: To standardize the processing of TRF results, we have developed WALTER, an online toolset allowing rapid, reproducible, and user-friendly analysis including statistical evaluation of the data. Given its web-based nature, it provides an easily accessible way to analyse TRF data without any need to install additional software. CONCLUSIONS: WALTER represents a major upgrade from currently available tools for the image processing of TRF scans. This toolset enables a rapid, highly reproducible, and user-friendly evaluation of almost any TRF scan including in-house statistical evaluation of the data. WALTER platform together with user manual describing the evaluation of TRF scans in detail and presenting tips and troubleshooting, as well as test data to demo the software are available at https://www.ceitec.eu/chromatin-molecular-complexes-jiri-fajkus/rg51/tab?tabId=125#WALTER and the source code at https://github.com/mlyc93/WALTER .


Assuntos
Software , Telômero , Telômero/genética
14.
Plant J ; 102(4): 678-687, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31834959

RESUMO

Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non-canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate-type telomere repeat TTAGGG or Allium genus-specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non-canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR-dCas9-eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C-3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis-like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco-like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere-associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.


Assuntos
Epigenômica , Código das Histonas/genética , Plantas/genética , Telômero/genética , Arabidopsis/genética , Cromatina/genética , Filogenia , Nicotiana/genética
15.
Nucleic Acids Res ; 47(18): 9842-9856, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392988

RESUMO

To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.


Assuntos
Evolução Molecular , Filogenia , RNA/genética , Telomerase/genética , Telômero/genética , Allium/genética , Arabidopsis/genética , Asparagales/genética , Embriófitas/genética , Genoma de Planta/genética , Humanos
16.
Genes Dev ; 27(14): 1545-50, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873938

RESUMO

Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic-nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , RNA Ribossômico/genética , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Modelos Genéticos , Mutação
17.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525595

RESUMO

Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.


Assuntos
Envelhecimento/genética , Arabidopsis/genética , Bryopsida/genética , Reparo do DNA , DNA Ribossômico/genética , Animais , Montagem e Desmontagem da Cromatina , Replicação do DNA , DNA de Plantas/genética , Dosagem de Genes , Instabilidade Genômica , Humanos , Transcrição Gênica
18.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670111

RESUMO

The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dosagem de Genes , Nicotiana , Poliploidia , Telomerase , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Telomerase/genética , Telomerase/metabolismo , Nicotiana/enzimologia , Nicotiana/genética
19.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466545

RESUMO

Involvement of epigenetic mechanisms in the regulation of telomeres and transposable elements (TEs), genomic regions with the protective and potentially detrimental function, respectively, has been frequently studied. Here, we analyzed telomere lengths in Arabidopsis thaliana plants of Columbia, Landsberg erecta and Wassilevskija ecotypes exposed repeatedly to the hypomethylation drug zebularine during germination. Shorter telomeres were detected in plants growing from seedlings germinated in the presence of zebularine with a progression in telomeric phenotype across generations, relatively high inter-individual variability, and diverse responses among ecotypes. Interestingly, the extent of telomere shortening in zebularine Columbia and Wassilevskija plants corresponded to the transcriptional activation of TEs, suggesting a correlated response of these genomic elements to the zebularine treatment. Changes in lengths of telomeres and levels of TE transcripts in leaves were not always correlated with a hypomethylation of cytosines located in these regions, indicating a cytosine methylation-independent level of their regulation. These observations, including differences among ecotypes together with distinct dynamics of the reversal of the disruption of telomere homeostasis and TEs transcriptional activation, reflect a complex involvement of epigenetic processes in the regulation of crucial genomic regions. Our results further demonstrate the ability of plant cells to cope with these changes without a critical loss of the genome stability.


Assuntos
Arabidopsis/genética , Citidina/análogos & derivados , Elementos de DNA Transponíveis/genética , Telômero/genética , Arabidopsis/metabolismo , Citidina/genética , Citosina/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Células Vegetais/metabolismo , Homeostase do Telômero/genética , Encurtamento do Telômero/genética , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa