Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 14(1): 122, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469108

RESUMO

BACKGROUND: Tumour homing capacity of engineered human adipose-derived mesenchymal stromal cells (ADMSCs) expressing anti-tumour agents might be the key for a much safer and yet efficient targeted tumour therapy. However, ADMSCs exhibit resistant to most gene transfection techniques and the use of highly efficient viral vectors has several disadvantages primarily concerning safety risk. Here, we optimized the use of highly efficient and safe nucleofection-based transfection using plasmid encoded for TNF-Related Apoptosis Inducing Ligand (TRAIL) into ADMSCs and investigated the potential anti-tumourigenic of TRAIL-expressing ADMSCs (ADMSCs-TRAIL) on selected cancer models in vitro. METHODS: Different concentration of TRAIL-encoded plasmid and ADMSCs were nucleofected and the percentage of fluorescence cells were analyzed to determine the optimal condition. TRAIL protein and mRNA were validated in nucloeofected ADMSCs using ELISA and RT-PCR respectively. Evaluation of TRAIL specific death receptors were performed on both tumours (A549/lung tumour, LN18/glioblastoma and HepG2/hepatocellular carcinoma) and haematological malignant lines (REH/acute lymphocytic leukaemia, K562/chronic myelogenous leukaemia and KMS-28BM/multiple myeloma) using flow cytometry. ADMSCs-TRAIL was subsequently assessed for anti-tumourigenic properties using both proliferation assay (MTS assay) and apoptosis assay (Annexin-V / Propidium Iodide staining). RESULTS: Nucleofection showed increased total plasmid concentration (2 µg to 8 µg) resulted in significantly higher reporter expression (11.33% to 39.7%) with slight reduction on cells viability (~10%). ADMSCs-TRAIL significantly inhibited ~50% of cell proliferation in LN18, signifying sensitivity of the cell to ADMSCs-TRAIL mediated inhibition. Inhibition of both tumour and malignant lines proliferation by ADMSCs-TRAIL conditioned medium noticed in HepG2, A549 and REH respectively, whereas K562 and KMS-28BM malignant lines exhibit resistant to ADMSCs-TRAIL mediated inhibition. Moreover, we found that native ADMSCs alone were capable of inducing apoptosis in both LN18 and HepG2 tumour lines, despite substantial increased on the percentage of apoptosis by ADMSCs-TRAIL. CONCLUSION: ADMSCs-TRAIL selectively inhibit cancer model and markedly induces apoptosis. Through investigation of the specific TRAIL death receptors expression, we saw that the receptors expression did influence the sensitivity of some but not all cancer lines to TRAIL-mediated inhibition. This study provides further insight into the anti-tumourigenic potential of ADMSCs-TRAIL on different cancer models.

2.
J Cell Biochem ; 113(10): 3153-64, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22615164

RESUMO

The clinical application of human bone marrow derived multipotent mesenchymal stromal cells (MSC) requires expansion, cryopreservation, and transportation from the laboratory to the site of cell implantation. The cryopreservation and thawing process of MSCs may have important effects on the viability, growth characteristics and functionality of these cells both in vitro and in vivo. More importantly, MSCs after two rounds of cryopreservation have not been as well characterized as fresh MSCs from the transplantation perspective. The objective of this study was to determine if the effect of successive cryopreservation of pooled MSCs during the exponential growth phase could impair their morphology, phenotype, gene expression, and differentiation capabilities. MSCs cryopreserved at passage 3 (cell bank) were thawed and expanded up to passage 4 and cryopreserved for the second time. These cells (passive) were then thawed and cultured up to passage 6, and, at each passage MSCs were characterized. As control, pooled passage 3 cells (active) after one round of cryopreservation were taken all the way to passage 6 without cryopreservation. We determined the growth rate of MSCs for both culture conditions in terms of population doubling number (PDN) and population doubling time (PDT). Gene expression profiles for pluripotency markers and tissue specific markers corresponding to neuroectoderm, mesoderm and endoderm lineages were also analyzed for active and passive cultures of MSC. The results show that in both culture conditions, MSCs exhibited similar growth properties, phenotypes and gene expression patterns as well as similar differentiation potential to osteo-, chondro-, and adipo-lineages in vitro. To conclude, it appears that successive or multiple rounds of cryopreservation of MSCs did not alter the fundamental characteristics of these cells and may be used for clinical therapy.


Assuntos
Medula Óssea/metabolismo , Criopreservação/métodos , Células-Tronco Mesenquimais/citologia , Biomarcadores , Medula Óssea/fisiologia , Contagem de Células , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Meios de Cultura/metabolismo , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Fenótipo , Temperatura , Fatores de Tempo , Transcriptoma
3.
Oncol Rep ; 40(2): 669-681, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29845263

RESUMO

Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non­small cell lung cancer (NSCLC). Ιnitially, we sorted two subpopulations known as the triple­positive (EpCAM+/CD166+/CD44+) and triple­negative (EpCAM-/CD166-/CD44-) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple­positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5­fluouracil and cisplatin with 80% expression of ALDH was observed in the triple­positive subpopulation, compared to only 67% detected in the triple­negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple­positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple­negative subpopulation on day 2. This was similarly observed on day 3 in the triple­positive subpopulation with 36% higher cellular migration compared to the triple­negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple­positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple­positive subpopulation demonstrated similar characteristics to CSCs compared to the triple­negative subpopulation. It also confirmed the feasibility of using the triple­positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Células-Tronco Neoplásicas/patologia , Células A549 , Molécula de Adesão de Leucócito Ativado/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/genética , Humanos , Receptores de Hialuronatos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos
4.
Stem Cell Res Ther ; 8(1): 143, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28610623

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) from various tissues have shown moderate therapeutic efficacy in reversing liver fibrosis in preclinical models. Here, we compared the relative therapeutic potential of pooled, adult human bone marrow (BM)- and neonatal Wharton's jelly (WJ)-derived MSCs to treat CCl4-induced liver fibrosis in rats. METHODS: Sprague-Dawley rats were injected with CCl4 for 8 weeks to induce irreversible liver fibrosis. Ex-vivo expanded, pooled human MSCs obtained from BM and WJ were intravenously administered into rats with liver fibrosis at a dose of 10 × 106 cells/animal. Sham control and vehicle-treated animals served as negative and disease controls, respectively. The animals were sacrificed at 30 and 70 days after cell transplantation and hepatic-hydroxyproline content, histopathological, and immunohistochemical analyses were performed. RESULTS: BM-MSCs treatment showed a marked reduction in liver fibrosis as determined by Masson's trichrome and Sirius red staining as compared to those treated with the vehicle. Furthermore, hepatic-hydroxyproline content and percentage collagen proportionate area were found to be significantly lower in the BM-MSCs-treated group. In contrast, WJ-MSCs treatment showed less reduction of fibrosis at both time points. Immunohistochemical analysis of BM-MSCs-treated liver samples showed a reduction in α-SMA+ myofibroblasts and increased number of EpCAM+ hepatic progenitor cells, along with Ki-67+ and human matrix metalloprotease-1+ (MMP-1+) cells as compared to WJ-MSCs-treated rat livers. CONCLUSIONS: Our findings suggest that BM-MSCs are more effective than WJ-MSCs in treating liver fibrosis in a CCl4-induced model in rats. The superior therapeutic activity of BM-MSCs may be attributed to their expression of certain MMPs and angiogenic factors.


Assuntos
Transplante de Medula Óssea , Cirrose Hepática/terapia , Transplante de Células-Tronco Mesenquimais , Animais , Tetracloreto de Carbono/toxicidade , Modelos Animais de Doenças , Molécula de Adesão da Célula Epitelial/genética , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Células-Tronco Mesenquimais/citologia , Miofibroblastos/metabolismo , Ratos , Geleia de Wharton/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa