Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 9: 450, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696812

RESUMO

Parental behaviors involve complex social recognition and memory processes and interactive behavior with children that can greatly facilitate healthy human family life. Fathers play a substantial role in child care in a small but significant number of mammals, including humans. However, the brain mechanism that controls male parental behavior is much less understood than that controlling female parental behavior. Fathers of non-monogamous laboratory ICR mice are an interesting model for examining the factors that influence paternal responsiveness because sires can exhibit maternal-like parental care (retrieval of pups) when separated from their pups along with their pairmates because of olfactory and auditory signals from the dams. Here we tested whether paternal behavior is related to femininity by the aromatization of testosterone. For this purpose, we measured the immunoreactivity of aromatase [cytochrome P450 family 19 (CYP19)], which synthesizes estrogen from androgen, in nine brain regions of the sire. We observed higher levels of aromatase expression in these areas of the sire brain when they engaged in communicative interactions with dams in separate cages. Interestingly, the number of nuclei with aromatase immunoreactivity in sires left together with maternal mates in the home cage after pup-removing was significantly larger than that in sires housed with a whole family. The capacity of sires to retrieve pups was increased following a period of 5 days spent with the pups as a whole family after parturition, whereas the acquisition of this ability was suppressed in sires treated daily with an aromatase inhibitor. The results demonstrate that the dam significantly stimulates aromatase in the male brain and that the presence of the pups has an inhibitory effect on this increase. These results also suggest that brain aromatization regulates the initiation, development, and maintenance of paternal behavior in the ICR male mice.

2.
Neurosci Lett ; 570: 21-5, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24721669

RESUMO

In laboratory animals, less is known about the neural circuits that mediate paternal behavior than those that influence maternal behavior. In mice, we recently reported that when sires are separated with their mate dams from their pups, ultrasound and pheromonal signals from the dams can evoke and initiate maternal-like retrieval behavior in the sires upon reunion with the offspring; this is termed mate-dependent paternal care. We used electrolytic brain lesion (EBL) methods to identify the potential roles of the medial preoptic area (mPOA) and ventral pallidum (VP) regions in regulating paternal care, areas known to be critical for the expression of maternal behavior. Electrolytic lesions of the mPOA or VP disrupted mate-dependent paternal care; latencies to initiate pup retrieval, grooming and crouching were longer in the EBL-treated sires relative to the sham-operated mice. The number of grooming episodes and duration of crouching were also lower in sires with the EBL in both areas. These results indicate that the mPOA and VP regions are essential for mate-dependent paternal care in mice.


Assuntos
Prosencéfalo Basal/fisiologia , Comportamento Paterno/fisiologia , Área Pré-Óptica/fisiologia , Animais , Eletricidade , Feminino , Masculino , Camundongos Endogâmicos ICR
3.
Front Behav Neurosci ; 8: 133, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795584

RESUMO

CD157, known as bone marrow stromal cell antigen-1, is a glycosylphosphatidylinositol-anchored ADP-ribosyl cyclase that supports the survival and function of B-lymphocytes and hematopoietic or intestinal stem cells. Although CD157/Bst1 is a risk locus in Parkinson's disease (PD), little is known about the function of CD157 in the nervous system and contribution to PD progression. Here, we show that no apparent motor dysfunction was observed in young knockout (CD157 (-/-)) male mice under less aging-related effects on behaviors. CD157 (-/-) mice exhibited anxiety-related and depression-like behaviors compared with wild-type mice. These behaviors were rescued through treatment with anti-psychiatric drugs and oxytocin. CD157 was weakly expressed in the amygdala and c-Fos immunoreactivity in the amygdala was less evident in CD157 (-/-) mice than in wild-type mice. These results demonstrate for the first time that CD157 plays a role as a neuro-regulator and suggest a potential role in pre-motor symptoms in PD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa