Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430258

RESUMO

Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.


Assuntos
Resistência à Doença/genética , Óxido Nítrico/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Óxido Nítrico/metabolismo , Transcrição Gênica/genética
2.
Cells ; 11(20)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291157

RESUMO

Biotic and abiotic stresses severely affect agriculture by affecting crop productivity, soil fertility, and health. These stresses may have significant financial repercussions, necessitating a practical, cost-effective, and ecologically friendly approach to lessen their negative impacts on plants. Several agrochemicals, such as fertilizers, pesticides, and insecticides, are used to improve plant health and protection; however, these chemical supplements have serious implications for human health. Plants being sessile cannot move or escape to avoid stress. Therefore, they have evolved to develop highly beneficial interactions with endophytes. The targeted use of beneficial plant endophytes and their role in combating biotic and abiotic stresses are gaining attention. Therefore, it is important to experimentally validate these interactions and determine how they affect plant fitness. This review highlights research that sheds light on how endophytes help plants tolerate biotic and abiotic stresses through plant-symbiont and plant-microbiota interactions. There is a great need to focus research efforts on this vital area to achieve a system-level understanding of plant-microbe interactions that occur naturally.


Assuntos
Endófitos , Inseticidas , Humanos , Fertilizantes , Plantas , Solo
3.
Sci Rep ; 8(1): 771, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335449

RESUMO

TFs are important proteins regulating plant responses during environmental stresses. These insults typically induce changes in cellular redox tone driven in part by promoting the production of reactive nitrogen species (RNS). The main source of these RNS is nitric oxide (NO), which serves as a signalling molecule, eliciting defence and resistance responses. To understand how these signalling molecules regulate key biological processes, we performed a large scale S-nitrosocysteine (CySNO)-mediated RNA-seq analysis. The DEGs were analysed to identify potential regulatory TFs. We found a total of 673 (up- and down-regulated) TFs representing a broad range of TF families. GO-enrichment and MapMan analysis suggests that more than 98% of TFs were mapped to the Arabidopsis thaliana genome and classified into pathways like hormone signalling, protein degradation, development, biotic and abiotic stress, etc. A functional analysis of three randomly selected TFs, DDF1, RAP2.6, and AtMYB48 identified a regulatory role in plant growth and immunity. Loss-of-function mutations within DDF1 and RAP2.6 showed compromised basal defence and effector triggered immunity, suggesting their positive role in two major plant defence systems. Together, these results imply an important data representing NO-responsive TFs that will help in exploring the core mechanisms involved in biological processes in plants.


Assuntos
Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Óxido Nítrico/metabolismo , Estresse Fisiológico , Fatores de Transcrição/biossíntese , Transcriptoma , Redes e Vias Metabólicas , Análise de Sequência de RNA
4.
Front Plant Sci ; 7: 1712, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917181

RESUMO

Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA) domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO)-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090) showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000) and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO-responsive AtHMA domain containing genes may play an important role in plant development and immunity.

5.
Plant Physiol Biochem ; 106: 82-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27155375

RESUMO

Receptor mediated signal carriers play a critical role in the regulation of plant defense and development. Rapid alkalization factor (RALF) proteins potentially comprise important signaling components which may have a key role in plant biology. The RALF gene family contains large number of genes in several plant species, however, only a few RALF genes have been characterized to date. In this study, an extensive database search identified 39, 43, 34 and 18 RALF genes in Arabidopsis, rice, maize and soybean, respectively. These RALF genes were found to be highly conserved across the 4 plant species. A comprehensive analysis including the chromosomal location, gene structure, subcellular location, conserved motifs, protein structure, protein-ligand interaction and promoter analysis was performed. RALF genes from four plant species were divided into 7 groups based on phylogenetic analysis. In silico expression analysis of these genes, using microarray and EST data, revealed that these genes exhibit a variety of expression patterns. Furthermore, RALF genes showed distinct expression patterns of transcript accumulation in vivo following nitrosative and oxidative stresses in Arabidopsis. Predicted interaction between RALF and heme ligand also showed that RALF proteins may contribute towards transporting or scavenging oxygen moieties. This suggests a possible role for RALF genes during changes in cellular redox status. Collectively, our data provides a valuable resource to prime future research in the role of RALF genes in plant growth and development.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Plantas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/genética , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Heme/metabolismo , Ligantes , Mutação/genética , Motivos de Nucleotídeos/genética , Estresse Oxidativo/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa