RESUMO
Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.
Assuntos
Camundongos Knockout , Transtornos do Neurodesenvolvimento , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fatores de Transcrição/genéticaRESUMO
PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.
Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genéticaRESUMO
Recently, others and we identified de novo FBXO11 (F-Box only protein 11) variants as causative for a variable neurodevelopmental disorder (NDD). We now assembled clinical and mutational information on 23 additional individuals. The phenotypic spectrum remains highly variable, with developmental delay and/or intellectual disability as the core feature and behavioral anomalies, hypotonia and various facial dysmorphism as frequent aspects. The mutational spectrum includes intragenic deletions, likely gene disrupting and missense variants distributed across the protein. To further characterize the functional consequences of FBXO11 missense variants, we analyzed their effects on protein expression and localization by overexpression of 17 different mutant constructs in HEK293 and HeLa cells. We found that the majority of missense variants resulted in subcellular mislocalization and/or reduced FBXO11 protein expression levels. For instance, variants located in the nuclear localization signal and the N-terminal F-Box domain lead to altered subcellular localization with exclusion from the nucleus or the formation of cytoplasmic aggregates and to reduced protein levels in western blot. In contrast, variants localized in the C-terminal Zn-finger UBR domain lead to an accumulation in the cytoplasm without alteration of protein levels. Together with the mutational data, our functional results suggest that most missense variants likely lead to a loss of the original FBXO11 function and thereby highlight haploinsufficiency as the most likely disease mechanism for FBXO11-associated NDDs.
Assuntos
Proteínas F-Box , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Proteína-Arginina N-Metiltransferases/genéticaRESUMO
BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.
Assuntos
Artrogripose , Humanos , Animais , Suínos , Mutação/genética , Artrogripose/genética , Artrogripose/patologia , Perda de Heterozigosidade , Feto , Fenótipo , Linhagem , Cinesinas/genéticaRESUMO
BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.
Assuntos
Proteínas Mitocondriais , Ubiquinona , Linhagem Celular , Criança , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Neuroimagem , Fenótipo , Ubiquinona/genética , Ubiquinona/metabolismoRESUMO
OBJECTIVES: To examine the diagnostic yield of trio exome sequencing in fetuses with multiple structural defects with no pathogenic findings in cytogenetic and microarray analyses. METHODS: We recruited 51 fetuses with two or more defects, non-immune fetal hydrops or fetal akinesia deformation syndrome|or fetal akinesia deformation sequence (FADS). Trio exome sequencing was performed on DNA from chorionic villi samples and parental blood. Detection of genomic variation and prioritization of clinically relevant variants was performed according to in-house standard operating procedures. RESULTS: Median maternal and gestational age was 32.0 years and 21.0 weeks, respectively. Forty-three (84.3%) fetuses had two or more affected organ systems. The remaining fetuses had isolated fetal hydrops or FADS. In total, the exome analysis established the genetic cause for the clinical abnormalities in 22 (43.1%, 95% CI 29.4%-57.8%) pregnancies. CONCLUSIONS: In fetuses with multiple defects, hydrops or FADS and normal standard genetic results, trio exome sequencing has the potential to identify genetic anomalies in more than 40% of cases.
Assuntos
Exoma , Hidropisia Fetal , Adulto , Feminino , Feto/diagnóstico por imagem , Humanos , Hidropisia Fetal/genética , Pais , Gravidez , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal , Sequenciamento do Exoma/métodosRESUMO
BACKGROUND: Audience response systems allow to activate the audience and to receive a direct feedback of participants during lectures. Modern systems do not require any proprietary hardware anymore. Students can directly respond on their smartphone. Several studies reported about a high level of satisfaction of students when audience response systems are used, however their impact on learning success is still unclear. METHODS: In order to evaluate the impact of an audience response system on the learning success we implemented the audience response system eduVote into a seminar series and performed a controlled crossover study on its impact on assessments. One hundred fifty-four students in nine groups were taught the same content. In four groups, eduVote was integrated for the first topic while five groups were taught this topic without the audience response systems. For a second topic, the groups were switched: Those groups who were taught before using eduVote were now taught without the audience response system and vice versa. We then analysed the impact of the audience response system on the students' performance in a summative assessment and specifically focused on questions dealing with the topic, for which the audience response system was used during teaching. We further assessed the students' perception on the use of eduVote using questionnaires. RESULTS: In our controlled crossover study we could not confirm an impact of the audience response system eduVote on long-term persistence i.e. the students' performance in the summative assessment. Our evaluation revealed that students assessed the use of eduVote very positively, felt stronger engaged and better motivated to deal with the respective topics and would prefer their integration into additional courses as well. In particular we identified that students who feel uncomfortable with answering questions in front of others profit from the use of an audience response system during teaching. CONCLUSIONS: Audience response systems motivate and activate students and increase their engagement during classes. However, their impact on long-term persistence and summative assessments may be limited. Audience response systems, however, specifically allow activating students which cannot be reached by the traditional way of asking questions without such an anonymous tool.