Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(17): 5063-5080, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34586813

RESUMO

Anisotropic, submicrometer-sized particles are versatile systems providing interesting features in creating ordering in two-dimensional systems. Combining hard ellipsoids with a soft shell further enhances the opportunities to trigger and control order and alignment. In this work, we report rich 2D phase behavior and show how softness affects the ordering of anisotropic particles at fluid oil-water interfaces. Three different core-shell systems were synthesized such that they have the same elliptical hematite-silica core but differ with respect to thickness and stiffness of the soft microgel shell. Compression isotherms, the shape of individual core-shell microgels, and their 2D order at a decane-water interface are investigated by means of the Langmuir-Blodgett technique combined with ex-situ atomic force microscopy (AFM) imaging as well as dissipative particle dynamics (DPD) simulations. We show how the softness, size, and anisotropy of the microgel shell affect the side-to-side vs tip-to-tip ordering of anisotropic hybrid microgels as well as the alignment with respect to the direction of compression in the Langmuir trough. A large, soft microgel shell leads to an ordered structure with tip-to-tip alignment directed perpendicular to the direction of compression. In contrast, a thin and harder microgel shell leads to side-to-side ordering orientated parallel to the compression direction. In addition, the thin and harder microgel shell induces clustering of the microgels in the dilute state, indicating the presence of strong capillary interactions. Our findings highlight the relevance of softness for the complex ordering of anisotropic hybrid microgels at interfaces.

2.
Phys Chem Chem Phys ; 22(43): 25032-25041, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33112301

RESUMO

Electrical conductivity relaxation experiments on oxides with three mobile charge carriers, H+, O2- and e-, yield in (de-)hydration experiments kinetic parameters (diffusion coefficients and surface reaction constants). In addition, three amplitude factors are obtained, but they have not been given further consideration because quantitative expressions for their forms are lacking. In this study, the forms of the amplitude factors are derived for a diffusion-limited and a surface-reaction-limited case and a mixed case. In order to demonstrate the benefits of the approach, the electrical conductivity relaxation behaviour of lanthanum tungstate (La5.4WO11.1, LaWO54) was investigated experimentally over the temperature range 923 ≤T/K ≤ 1223. A switch from two-fold non-monotonic relaxation behaviour at high temperatures to two-fold monotonic behaviour at low temperatures upon hydration was observed. The switch in sign of the fast kinetics' amplitude factor can be assigned to the electrochemical mobility of protons surpassing the electron-hole mobility with decreasing temperature.

3.
ACS Appl Mater Interfaces ; 16(10): 12793-12804, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422376

RESUMO

In this work, we investigate the growth of monoclinic ß-(InxGa1-x)2O3 alloys on top of (010) ß-Ga2O3 substrates via plasma-assisted molecular beam epitaxy. In particular, using different in situ (reflection high-energy electron diffraction) and ex situ (atomic force microscopy, X-ray diffraction, time-of-flight secondary ion mass spectrometry, and transmission electron microscopy) characterization techniques, we discuss (i) the growth parameters that allow for In incorporation and (ii) the obtainable structural quality of the deposited layers as a function of the alloy composition. In particular, we give experimental evidence of the possibility of coherently growing (010) ß-(InxGa1-x)2O3 layers on ß-Ga2O3 with good structural quality for x up to ≈ 0.1. Moreover, we show that the monoclinic structure of the underlying (010) ß-Ga2O3 substrate can be preserved in the ß-(InxGa1-x)2O3 layers for wider concentrations of In (x ≤ 0.19). Nonetheless, the formation of a large amount of structural defects, like unexpected (102̅) oriented twin domains and partial segregation of In is suggested for x > 0.1. Strain relaxes anisotropically, maintaining an elastically strained unit cell along the a* direction vs plastic relaxation along the c* direction. This study provides important guidelines for the low-end side tunability of the energy bandgap of ß-Ga2O3-based alloys and provides an estimate of its potential in increasing the confined carrier concentration of two-dimensional electron gases in ß-(InxGa1-x)2O3/(AlyGa1-y)2O3 heterostructures.

4.
Sci Rep ; 11(1): 14384, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257338

RESUMO

Resistive switching is an important phenomenon for future memory devices such as resistance random access memories or neuronal networks. While there are different types of resistive switching, such as filament or interface switching, this work focuses on bulk switching in amorphous, binary oxides. Bulk switching was found experimentally in different oxides, for example in amorphous gallium oxide. The forms of the observed current-voltage curves differ, however, fundamentally. Even within the same material, both abnormal bipolar and normal bipolar resistive switching were found. Here, we use a new drift-diffusion model to theoretically investigate bulk switching in amorphous oxides where the electronic conductivity can be described by Mott's concept of a mobility edge. We show not only that a strong, non-linear dependence of the electronic conductivity on the oxygen content is necessary for bulk switching but also that changing the geometry of the memristive device causes the transition between abnormal and normal bipolar switching.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa