Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34531321

RESUMO

Natural spider silk with extraordinary mechanical properties is typically spun from more than one type of spidroin. Although the main components of various spider silks have been widely studied, little is known about the molecular role of the minor silk components in spidroin self-assembly and fiber formation. Here, we show that the minor component of spider eggcase silk, TuSp2, not only accelerates self-assembly but remarkably promotes molecular chain alignment of spidroins upon physical shearing. NMR structure of the repetitive domain of TuSp2 reveals that its dimeric structure with unique charged surface serves as a platform to recruit different domains of the main eggcase component TuSp1. Artificial fiber spun from the complex between TuSp1 and TuSp2 minispidroins exhibits considerably higher strength and Young's modulus than its native counterpart. These results create a framework for rationally designing silk biomaterials based on distinct roles of silk components.


Assuntos
Fibroínas/química , Animais , Materiais Biocompatíveis , Fibroínas/metabolismo , Seda/química , Seda/metabolismo , Aranhas/metabolismo
2.
Am J Pathol ; 192(8): 1186-1198, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640677

RESUMO

This study reports that hairy and enhancer of split homolog-1 (HES1), known to repress gene transcription in progenitor cells of several cell lineages, was strongly expressed in cells and tissues of T-cell lymphoma expressing the oncogenic chimeric tyrosine kinase nucleophosmin (NPM)-anaplastic lymphoma kinase [ALK; ALK+ T-cell lymphoma (TCL)]. The structural analysis of the Orange domain of HES1 indicated that HES1 formed a highly stable homodimer. Of note, repression of HES1 expression led to inhibition of ALK+ TCL cell growth in vivo. The expression of the HES1 gene was induced by NPM-ALK through activation of STAT3, which bound to the gene's promoter and induced the gene's transcription. NPM-ALK also directly phosphorylated HES1 protein. In turn, HES1 up-regulated and down-regulated in ALK+ TCL cells, the expression of numerous genes, protein products of which are involved in key cell functions, such as cell proliferation and viability. Among the genes inhibited by HES1 was thioredoxin-interacting protein (TXNIP), encoding a protein implicated in promotion of cell death in various types of cells. Accordingly, ALK+ TCL cells and tissues lacked expression of TXNIP, and its transcription was co-inhibited by HES1 and STAT3 in an NPM-ALK-dependent manner. Finally, the induced expression of TXNIP induced massive apoptotic cell death of ALK+ TCL cells. The results reveal a novel NPM-ALK-controlled pro-oncogenic regulatory network and document an important role of HES and TXNIP in the NPM-ALK-driven oncogenesis, with the former protein displaying oncogenic and the latter tumor suppressor properties.


Assuntos
Quinase do Linfoma Anaplásico , Proteínas de Transporte , Linfoma de Células T , Fatores de Transcrição HES-1 , Quinase do Linfoma Anaplásico/genética , Carcinogênese/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Oncogenes , Fosforilação , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
3.
Biomacromolecules ; 23(4): 1643-1651, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35312302

RESUMO

Spider silk is self-assembled from silk proteins or spidroins. C-terminal domains (CTDs) of various types of spidroins are relatively conserved in amino acid sequences and are suggested to adopt similar structures and perform similar functional roles in spidroin storage and silk formation. Here, we solved the structure of the CTD from a capture-spiral silk protein (CTDFl) and characterized its stability and fibril formation in the presence and absence of a reducing agent at different pH values. CTDFl adopts a dimeric structure with 8 helices, but the CTDs of other types of spidroins exist in a domain-swapped dimeric structure with 10 helices. Despite the structural differences, CTDFl is pH-responsive in stability and fibril formation, similar to the CTDs from minor and major ampullate spidroins. Thus, the functional role of CTDs in silk fiber formation seems conserved. Comparing wild-type CTDFl and its mutants, we found that the pH-responsive behavior results from the protonation of H76, which is conserved from different spider species. In addition, the fibril formation rate of CTDFl correlates with its instability, suggesting that structural changes are involved in fibril formation.


Assuntos
Fibroínas , Aranhas , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes , Fibroínas/química , Fibroínas/genética , Estrutura Secundária de Proteína , Seda/química , Aranhas/metabolismo
4.
Nucleic Acids Res ; 48(16): 9361-9371, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32710623

RESUMO

Human Y-box binding protein 1 (YB-1) is a multifunctional protein and overexpressed in many types of cancer. It specifically recognizes DNA/RNA through a cold shock domain (CSD) and regulates nucleic acid metabolism. The C-terminal extension of CSD and the phosphorylation of S102 are indispensable for YB-1 function. Until now, the roles of the C-terminal extension and phosphorylation in gene transcription and translation are still largely unknown. Here, we solved the structure of human YB-1 CSD with a C-terminal extension sequence (CSDex). The structure reveals that the extension interacts with several residues in the conventional CSD and adopts a rigid structure instead of being disordered. Either deletion of this extension or phosphorylation of S102 destabilizes the protein and results in partial unfolding. Structural characterization of CSDex in complex with a ssDNA heptamer shows that all the seven nucleotides are involved in DNA-protein interactions and the C-terminal extension provides a unique DNA binding site. Our DNA-binding study indicates that CSDex can recognize more DNA sequences than previously thought and the phosphorylation reduces its binding to ssDNA dramatically. Our results suggest that gene transcription and translation can be regulated by changing the affinity of CSDex binding to DNA and RNA through phosphorylation, respectively.


Assuntos
Resposta ao Choque Frio/genética , DNA/genética , RNA/genética , Proteína 1 de Ligação a Y-Box/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Humanos , Fosforilação/genética , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética
5.
Biophys J ; 120(12): 2444-2453, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33894215

RESUMO

The viral protease domain (NS3pro) of dengue virus is essential for virus replication, and its cofactor NS2B is indispensable for the proteolytic function. Although several NS3pro-NS2B complex structures have been obtained, the dynamic property of the complex remains poorly understood. Using NMR relaxation techniques, here we found that NS3pro-NS2B exists in both closed and open conformations that are in dynamic equilibrium on a submillisecond timescale in aqueous solution. Our structural information indicates that the C-terminal region of NS2B is disordered in the minor open conformation but folded in the major closed conformation. Using mutagenesis, we showed that the closed-open conformational equilibrium can be shifted by changing NS2B stability. Moreover, we revealed that the proteolytic activity of NS3pro-NS2B correlates well with the population of the closed conformation. Our results suggest that the closed-open conformational equilibrium can be used by both nature and humanity to control the replication of dengue virus.


Assuntos
Vírus da Dengue , Vírus da Dengue/metabolismo , Conformação Molecular , Peptídeo Hidrolases , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genética
6.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641455

RESUMO

Chitin-binding hevein-like peptides (CB-HLPs) belong to a family of cysteine-rich peptides that play important roles in plant stress and defense mechanisms. CB-HLPs are ribosomally synthesized peptides that are known to be bioprocessed from the following two types of three-domain CB-HLP precursor architectures: cargo-carrying and non-cargo-carrying. Here, we report the identification and characterization of chenotides biosynthesized from the third type of precursors, which are cleavable hololectins of the quinoa (Chenopodium quinoa) family. Chenotides are 6-Cys-CB-HLPs of 29-31 amino acids, which have a third type of precursor architecture that encompasses a canonical chitin-binding domain that is involved in chitin binding and anti-fungal activities. Microbroth dilution assays and microscopic analyses showed that chenotides are effective against phyto-pathogenic fungi in the micromolar range. Structure determination revealed that chenotides are cystine knotted and highly compact, which could confer resistance against heat and proteolytic degradation. Importantly, chenotides are connected by a novel 18-residue Gly/Ala-rich linker that is a target for bioprocessing by cathepsin-like endopeptidases. Taken together, our findings reveal that chenotides are a new family of CB-HLPs from quinoa that are synthesized as a single multi-modular unit and bioprocessed to yield individual mature CB-HLPs. Importantly, such precursors constitute a new family of cleavable hololectins. This unusual feature could increase the biosynthetic efficiency of anti-fungal CB-HLPs, to provide an evolutionary advantage for plant survival and reproduction.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Chenopodium quinoa/química , Fragmentos de Peptídeos/farmacologia , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Proteínas de Plantas/química , Conformação Proteica , Homologia de Sequência
7.
Biophys J ; 118(2): 396-402, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31870540

RESUMO

Fatty acid binding proteins play an important role in the transportation of fatty acids. Despite intensive studies, how fatty acids enter the protein cavity for binding is still controversial. Here, a gap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the gap is locked by a disulfide bridge. According to its structure determined here by NMR, this variant has no obvious openings as the ligand entrance and the gap cannot be widened by internal dynamics. Nevertheless, it still takes up fatty acids and other ligands. NMR relaxation dispersion, chemical exchange saturation transfer, and hydrogen-deuterium exchange experiments show that the variant exists in a major native state, two minor native-like states, and two locally unfolded states in aqueous solution. Local unfolding of either ßB-ßD or helix 2 can generate an opening large enough for ligands to enter the protein cavity, but only the fast local unfolding of helix 2 is relevant to the ligand entry process.


Assuntos
Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Desdobramento de Proteína , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
8.
J Biol Chem ; 294(51): 19604-19615, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31727740

RESUMO

Disulfide-rich plant peptides with molecular masses of 2-6 kDa represent an expanding class of peptidyl-type natural products with diverse functions. They are structurally compact, hyperstable, and underexplored as cell-penetrating agents that inhibit intracellular functions. Here, we report the discovery of an anionic, 34-residue peptide, the disulfide-rich roseltide rT7 from Hibiscus sabdariffa (of the Malvaceae family) that penetrates cells and inhibits their proteasomal activities. Combined proteomics and NMR spectroscopy revealed that roseltide rT7 is a cystine-knotted, six-cysteine hevein-like cysteine-rich peptide. A pair-wise comparison indicated that roseltide rT7 is >100-fold more stable against protease degradation than its S-alkylated analog. Confocal microscopy studies and cell-based assays disclosed that after roseltide rT7 penetrates cells, it causes accumulation of ubiquitinated proteins, inhibits human 20S proteasomes, reduces tumor necrosis factor-induced IκBα degradation, and decreases expression levels of intercellular adhesion molecule-1. Structure-activity studies revealed that roseltide rT7 uses a canonical substrate-binding mechanism for proteasomal inhibition enabled by an IIML motif embedded in its proline-rich and exceptionally long intercysteine loop 4. Taken together, our results provide mechanistic insights into a novel disulfide-rich, anionic, and cell-penetrating peptide, representing a potential lead for further development as a proteasomal inhibitor in anti-cancer or anti-inflammatory therapies.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Hibiscus/química , Extratos Vegetais/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Células A549 , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos , Antineoplásicos Fitogênicos/farmacologia , Cisteína/química , Dissulfetos , Endocitose , Citometria de Fluxo , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Conformação Molecular , Lectinas de Plantas , Proteínas de Plantas/química , Proteômica , Relação Estrutura-Atividade , Ubiquitina/química
9.
Nucleic Acids Res ; 46(3): 1167-1179, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29194511

RESUMO

Centromeric identity and chromosome segregation are determined by the precise centromeric targeting of CENP-A, the centromere-specific histone H3 variant. The significance of the amino-terminal domain (NTD) of CENP-A in this process remains unclear. Here, we assessed the functional significance of each residue within the NTD of CENP-A from Schizosaccharomyces pombe (SpCENP-A) and identified a proline-rich 'GRANT' (Genomic stability-Regulating site within CENP-A N-Terminus) motif that is important for CENP-A function. Through sequential mutagenesis, we show that GRANT proline residues are essential for coordinating SpCENP-A centromeric targeting. GRANT proline-15 (P15), in particular, undergoes cis-trans isomerization to regulate chromosome segregation fidelity, which appears to be carried out by two FK506-binding protein (FKBP) family prolyl cis-trans isomerases. Using proteomics analysis, we further identified the SpCENP-A-localizing chaperone Sim3 as a SpCENP-A NTD interacting protein that is dependent on GRANT proline residues. Ectopic expression of sim3+ complemented the chromosome segregation defect arising from the loss of these proline residues. Overall, cis-trans proline isomerization is a post-translational modification of the SpCENP-A NTD that confers precise propagation of centromeric integrity in fission yeast, presumably via targeting SpCENP-A to the centromere.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas Nucleares/metabolismo , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Centrômero/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Cromossomos Fúngicos/química , Teste de Complementação Genética , Instabilidade Genômica , Isomerismo , Cinética , Proteínas Nucleares/genética , Prolina/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
10.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586030

RESUMO

Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen-deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.


Assuntos
Proteínas de Insetos/química , Multimerização Proteica , Seda/química , Aranhas/química , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
11.
Biophys J ; 110(9): 1943-56, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166803

RESUMO

Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Domínios Proteicos , Motivo de Reconhecimento de RNA , Marcadores de Spin
12.
Angew Chem Int Ed Engl ; 55(24): 6869-72, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27105780

RESUMO

Fatty acid binding proteins are responsible for the transportation of fatty acids in biology. Despite intensive studies, the molecular mechanism of fatty acid entry to and exit from the protein cavity is still unclear. Here a cap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the helical cap is locked to the ß-barrel by a disulfide linkage. Structure determination shows that this variant adopts a closed conformation, but still uptakes fatty acids. Stopped-flow experiments indicate that a rate-limiting step exists before the ligand association and this step corresponds to the conversion of the closed form to the open one. NMR relaxation dispersion and H-D exchange data demonstrate the presence of two excited states: one is native-like, but the other adopts a locally unfolded structure. Local unfolding of helix 2 generates an opening for ligands to enter the protein cavity, and thus controls the ligand association rate.

13.
Structure ; 32(1): 18-23.e2, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924810

RESUMO

Leptin is a multi-potency cytokine that regulates various physiological functions, including weight control and energy homeostasis. Signaling of leptin is also important in many aging-related diseases. Leptin is required for the noncovalent crosslinking of different extracellular domains of leptin receptors, which is critical for receptor activation and downstream signaling. Nevertheless, the structure of intact apo-form leptin and the structural transition leptin undergoes upon receptor binding are not fully understood yet. Here, we determined the monomeric structure of wild-type human leptin by solution-state nuclear magnetic resonance spectroscopy. Leptin contains an intrinsically disordered region (IDR) in the internal A-B loop and the flexible helix E in the C-D loop, both of which undergo substantial local structural changes when leptin binds to its receptor. Our findings provide further insights into the molecular mechanisms of leptin signaling.


Assuntos
Leptina , Humanos , Homeostase , Leptina/química , Leptina/metabolismo , Conformação Molecular , Ligação Proteica
14.
Biochemistry ; 52(34): 5809-20, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23901897

RESUMO

The solution structure of human adult carbonmonoxy hemoglobin (HbCO A) was refined using stereospecifically assigned methyl groups and residual dipolar couplings based on our previous nuclear magnetic resonance structure. The tertiary structures of individual chains were found to be very similar to the X-ray structures, while the quaternary structures in solution at low salt concentrations resembled the X-ray R structure more than the R2 structure. On the basis of chemical shift perturbation by inositol hexaphosphate (IHP) titration and docking, we identified five possible IHP binding sites in HbCO A. Amide-water proton exchange experiments demonstrated that αThr38 located in the α1ß2 interface and several loop regions in both α- and ß-chains were dynamic on the subsecond time scale. Side chain methyl dynamics revealed that methyl groups in the α1ß2 interface were dynamic, but those in the α1ß1 interface were quite rigid on the nanosecond to picosecond and millisecond to microsecond time scales. All the data strongly suggest a dynamic α1ß2 interface that allows conformational changes among different forms (like T, R, and R2) easily in solution. Binding of IHP to HbCO A induced small structural and dynamic changes in the α1ß2 interface and the regions around the hemes but did not increase the conformational entropy of HbCO A. The binding also caused conformational changes on the millisecond time scale, very likely arising from the relative motion of the α1ß1 dimer with respect to the α2ß2 dimer. Heterotropic effectors like IHP may change the oxygen affinity of Hb through modulating the relative motion of the two dimers and then further altering the structure of heme binding regions.


Assuntos
Carboxihemoglobina/química , Hemoglobina A/química , Adulto , Carboxihemoglobina/efeitos dos fármacos , Heme/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ácido Fítico/metabolismo , Ácido Fítico/farmacologia , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Soluções
15.
Biomol NMR Assign ; 17(2): 265-268, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796383

RESUMO

Leptin is an adipose tissue-expressed 16-kDa hormone encoded by the ob/ob gene. It serves a crucial role in regulating diverse physiological processes, including body weight control, energy homeostasis regulation, promotion of cell proliferation, and more. Emerging research has also revealed potential implications of leptin in various aging-related diseases, suggesting multifaceted physiological roles of leptin. Structural investigation of wild-type leptin in apo form is of particular importance to understand its conformational plasticity for receptor interaction and recognition. Here, we report backbone and side-chain resonance assignments of wild-type human leptin as a basis for structural and functional studies on leptin-mediated signaling.


Assuntos
Tecido Adiposo , Leptina , Humanos , Leptina/genética , Ressonância Magnética Nuclear Biomolecular
16.
Biophys J ; 103(5): 1037-44, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23009853

RESUMO

Acyl carrier protein (ACP) domains shuttle acyl intermediates among the catalytic domains of multidomain type I fatty acid synthase and polyketide synthase (PKS) systems. It is believed that the unique function of ACPs is associated with their dynamic property, but it remains to be fully elucidated what type of protein dynamics is critical for the shuttling domain. Using NMR techniques, we found that the ACP domain of iterative type I PKS CalE8 from Micromonospora echinospora is highly dynamic on the millisecond-second timescale. Introduction of an interhelical disulfide linkage in the ACP domain suppresses the dynamics on the millisecond-second timescale and reduces the mobility on the picosecond-nanosecond timescale. We demonstrate that the full-length PKS is fully functional upon rigidification of the ACP domain, suggesting that although the flexibility of the disordered terminal linkers may be important for the function of the ACP domain, the internal dynamics of the helical regions is not critical for that function.


Assuntos
Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Proteína de Transporte de Acila/genética , Sequência de Aminoácidos , Dissulfetos/química , Micromonospora/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Policetídeo Sintases/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 106(22): 8906-11, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19458259

RESUMO

Spider silks are renowned for their excellent mechanical properties and biomimetic and industrial potentials. They are formed from the natural refolding of water-soluble fibroins with alpha-helical and random coil structures in silk glands into insoluble fibers with mainly beta-structures. The structures of the fibroins at atomic resolution and silk formation mechanism remain largely unknown. Here, we report the 3D structures of individual domains of a approximately 366-kDa eggcase silk protein that consists of 20 identical type 1 repetitive domains, one type 2 repetitive domain, and conserved nonrepetitive N- and C-terminal domains. The structures of the individual domains in solution were determined by using NMR techniques. The domain interactions were investigated by NMR and dynamic light-scattering techniques. The formation of micelles and macroscopic fibers from the domains was examined by electron microscopy. We find that either of the terminal domains covalently linked with at least one repetitive domain spontaneously forms micelle-like structures and can be further transformed into fibers at > or = 37 degrees C and a protein concentration of > 0.1 wt%. Our biophysical and biochemical experiments indicate that the less hydrophilic terminal domains initiate the assembly of the proteins and form the outer layer of the micelles whereas the more hydrophilic repetitive domains are embedded inside to ensure the formation of the micelle-like structures that are the essential intermediates in silk formation. Our results establish the roles of individual silk protein domains in fiber formation and provide the basis for designing miniature fibroins for producing artificial silks.


Assuntos
Fibroínas/química , Fibroínas/ultraestrutura , Aranhas/química , Sequência de Aminoácidos , Animais , Fibroínas/genética , Micelas , Microscopia Eletrônica , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
J Biomol NMR ; 51(1-2): 151-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21947923

RESUMO

A simple method for measuring amide hydrogen exchange rates is presented, which is based on the selective inversion of water magnetization with the use of radiation damping. Simulations show that accurate exchange rates can be measured despite the complications of radiation damping and cross relaxation to the exchange process between amide and water protons. This method cannot eliminate the contributions of the exchange-relayed NOE and direct NOE to the measured exchange rates, but minimize the direct NOE contribution. In addition, the amides with a significant amount of such indirect contributions are possible to be identified from the shape of the exchange peak intensity profiles or/and from the apparent relaxation rates of amide protons which are extracted from fitting the intensity profiles to an equation established here for our experiment. The method was tested on ubiquitin and also applied to an acyl carrier protein. The amide exchange rates for the acyl carrier protein at two pHs indicate that the entire protein is highly dynamic on the second timescale. Low protection factors for the residues in the regular secondary structural elements also suggest the presence of invisible unfolded species. The highly dynamic nature of the acyl carrier protein may be crucial for its interactions with its substrate and enzymes.


Assuntos
Proteína de Transporte de Acila/química , Amidas/química , Hidrogênio/química , Prótons , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética/métodos , Dobramento de Proteína , Água/química
19.
Biomol NMR Assign ; 15(2): 475-477, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34436735

RESUMO

Spider silk is renowned for its excellent mechanical properties. Among six types of silk and one silk glue produced by different abdominal glands for various purposes, tubuliform (eggcase) silk is unique due to its high serine and low glycine content. Eggcase silk is spun from at least two spidroins, tubuliform spidroin 1 (TuSp1) and TuSp2. TuSp1 and TuSp2 were identified as the major and the minor components in tubuliform glands, respectively. TuSp2 consists of multiple repetitive (RP) domains with short terminal tails and shares very limited homology to all known spidroins. Here we report backbone and side chain resonance assignments of TuSp2-RP as a basis for structural and functional studies on eggcase silk formation.


Assuntos
Fibroínas
20.
FEBS Lett ; 595(1): 145-154, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098102

RESUMO

Arabidopsis thaliana CYP71 (AtCYP71) is a chromatin-remodeling protein that promotes shoot apical meristem (SAM) differentiation. The N terminus of AtCYP71 contains a noncanonical WD domain, and the C terminus contains an enzymatic peptidyl-prolyl isomerase (PPIase) cyclophilin (CYP) domain. To date, there has been no characterization of CYP71, and its mode of action remains unknown. Here, we report the crystal structure of the CYP domain of AtCYP71 at 1.9 Å resolution. The structure shows key differences when compared to the canonical CYP fold of human CypA. To the best our knowledge, this is the first A. thaliana CYP structure with a conserved active site loop. Using nuclear magnetic resonance spectroscopy, we demonstrate that the CYP domain is active toward histone H3. Our findings suggest that the PPIase activity of the CYP domain is important for the function of AtCYP71 in chromatin remodeling during organogenesis.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Ciclofilinas/química , Histonas/metabolismo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa