Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16830, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039227

RESUMO

Two important factors affecting the progress of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the S-protein binding function of ACE2 receptors and the membrane fluidity of host cells. This study aimed to evaluate the effect of static magnetic field (SMF) on S-protein/ACE2 binding and cellular membrane fluidity of lung cells, and was performed in vitro using a Calu-3 cell model and in vivo using an animal model. The ability of ACE2 receptors to bind to SARS-CoV-2 spike protein on host cell surfaces under SMF stimulation was evaluated using fluorescence images. Host lung cell membrane fluidity was tested using fluorescence polarization to determine the effects of SMF. Our results indicate that 0.4 T SMF can affect binding between S-protein and ACE2 receptors and increase Calu-3 cell membrane fluidity, and that SMF exposure attenuates LPS-induced alveolar wall thickening in mice. These results may be of value for developing future non-contact, non-invasive, and low side-effect treatments to reduce disease severity in COVID-19-invaded lungs.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Pulmão , Fluidez de Membrana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/terapia , COVID-19/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Camundongos , Humanos , Campos Magnéticos , Linhagem Celular , Modelos Animais de Doenças , Ligação Proteica
2.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808023

RESUMO

In prosthodontics, the ability of glass-ceramics to express the optical properties of natural teeth is an important goal of esthetic restorations. Dental restorations do not merely need to be similar in color to natural teeth; proper optical properties, such as opalescence, transparency, etc., must be combined in order to achieve excellent esthetic effects. The optical properties of ceramic materials are mainly distinguished by different hues (e.g., A, B, C, and D) combined with translucency (e.g., high translucency (HT), medium translucency (MT), low translucency (LT), and medium opacity (MO)). However, there are many varieties of tooth color. Therefore, it is expected that glass-ceramics can change their nanocrystal size and porosity through different heat-treatment temperatures and times and, thereby, present different transparency effects. This study mainly analyzed the influence of changes in sintering temperature on the optical properties of glass-ceramics. The optical properties of glass-ceramics in the oral cavity were evaluated with human trials. We hypothesized that (1) the transparency of glass-ceramics can be changed by controlling the sintering temperature and (2) glass-ceramics modified by the sintering temperature can be suitable for clinical applications. Results showed that the transparency decreased, the nanoparticle size increased, the crystallinity increased, and the surface hardness decreased as the sintering temperature increased. High-brightness glass-ceramics have more-sensitive optical properties. Results of clinical trials showed that glass-ceramics whose transparency was changed by controlling the sintering temperature can be candidates for clinical applications. Based on the above results, the hypotheses of this study were supported. In the future, we will continue to explore the esthetic field of dental restorations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa