Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 21(3): 226-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26891792

RESUMO

Doxorubicin is a widely used chemotherapeutic agent, but its utility is limited by cellular resistance and off-target effects. To understand the molecular mechanisms regulating chemotherapeutic responses to doxorubicin, we previously carried out a genomewide search of doxorubicin-resistance genes in Schizosaccharomyces pombe fission yeast and showed that these genes are organized into networks that counteract doxorubicin cytotoxicity. Here, we describe the identification of a subgroup of doxorubicin-resistance genes that, when disrupted, leads to reduced tolerance to exogenous calcium. Unexpectedly, we observed a suppressive effect of calcium on doxorubicin cytotoxicity, where concurrent calcium and doxorubicin treatment resulted in significantly higher cell survival compared with cells treated with doxorubicin alone. Conversely, inhibitors of voltage-gated calcium channels enhanced doxorubicin cytotoxicity in the mutants. Consistent with these observations in fission yeast, calcium also suppressed doxorubicin cytotoxicity in human breast cancer cells. Further epistasis analyses in yeast showed that this suppression of doxorubicin toxicity by calcium was synergistically dependent on Rav1 and Vph2, two regulators of vacuolar-ATPase assembly; this suggests potential modulation of the calcium-doxorubicin interaction by fluctuating proton concentrations within the cellular environment. Thus, the modulatory effects of drugs or diet on calcium concentrations should be considered in doxorubicin treatment regimes.


Assuntos
Cálcio/farmacologia , Doxorrubicina/toxicidade , Inibidores da Topoisomerase II/toxicidade , Bloqueadores dos Canais de Cálcio/farmacologia , Sobrevivência Celular , Farmacorresistência Fúngica/genética , Genes Fúngicos , Humanos , Células MCF-7 , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo
2.
Front Bioeng Biotechnol ; 9: 679525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164387

RESUMO

RADA16 is a synthetic peptide that exists as a viscous solution in an acidic formulation. In an acidic aqueous environment, the peptides spontaneously self-assemble into ß-sheet nanofibers. Upon exposure and buffering of RADA16 solution to the physiological pH of biological fluids such as blood, interstitial fluid and lymph, the nanofibers begin physically crosslinking within seconds into a stable interwoven transparent hydrogel 3-D matrix. The RADA16 nanofiber hydrogel structure closely resembles the 3-dimensional architecture of native extracellular matrices. These properties make RADA16 formulations ideal topical hemostatic agents for controlling bleeding during surgery and to prevent post-operative rebleeding. A commercial RADA16 formulation is currently used for hemostasis in cardiovascular, gastrointestinal, and otorhinolaryngological surgical procedures, and studies are underway to investigate its use in wound healing and adhesion reduction. Straightforward application of viscous RADA16 into areas that are not easily accessible circumvents technical challenges in difficult-to-reach bleeding sites. The transparent hydrogel allows clear visualization of the surgical field and facilitates suture line assessment and revision. The shear-thinning and thixotropic properties of RADA16 allow its easy application through a narrow nozzle such as an endoscopic catheter. RADA16 hydrogels can fill tissue voids and do not swell so can be safely used in close proximity to pressure-sensitive tissues and in enclosed non-expandable regions. By definition, the synthetic peptide avoids potential microbiological contamination and immune responses that may occur with animal-, plant-, or mineral-derived topical hemostats. In vitro experiments, animal studies, and recent clinical experiences suggest that RADA16 nanofibrous hydrogels can act as surrogate extracellular matrices that support cellular behavior and interactions essential for wound healing and for tissue regenerative applications. In the future, the unique nature of RADA16 may also allow us to use it as a depot for precisely regulated drug and biopharmaceutical delivery.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa