RESUMO
This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.
Assuntos
Ácido Acético , Catequina , Solventes Eutéticos Profundos , Interações Hidrofóbicas e Hidrofílicas , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Ácido Acético/química , Catequina/química , Catequina/análise , Solventes Eutéticos Profundos/química , AdsorçãoRESUMO
Fusarium head blight (FHB) is a major disease worldwide on cultivated cereals, caused by several Fusarium species. FHB can cause not only yield reduction but also accumulation of mycotoxins in the grain contaminating the food supply. Much of the earlier research has focused on Fusarium pathogenesis, conditions required for disease development and toxin accumulation, and FHB management. However, the Fusarium community composition within the micro-habitat of a single diseased wheat head in the field has had limited investigation. Similarly, the relationship between the Fusarium community structure and mycotoxin accumulation within diseased heads remains unclear. In the present study, we investigated the Fusarium community in diseased heads sampled from different geographical sites in China. Several sites in Shandong province formed a transitional region which contained highly variable profiles of Fusarium OTUs, where a single diseased head could contain more than 10 Fusarium OTUs. Mycotoxin accumulation was independent of geographical properties, however, deoxynivalenol, 15-acetyldeoxynivalenol and zearalenone concentrations showed a significant negative correlation with Fusarium diversity on diseased heads while a significant positive correlation between nivalenol concentration and Fusarium diversity was observed. Taken together, the Fusarium OTU diversity within diseased heads in the field significantly influences mycotoxin accumulation, providing an important point to consider in FHB disease management and mycotoxin research.
Assuntos
Fusarium , Micotoxinas , Micotoxinas/análise , Fusarium/genética , Triticum , Doenças das Plantas , Grão Comestível/químicaRESUMO
In order to investigate the antioxidant activity of Elaeagnus umbellata polysaccharides, the physicochemical characteristics of purified Elaeagnus umbellata polysaccharides (EUP, consisting of two fractions, EUP1 and EUP2) were investigated using UV spectrophotometry, high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), and Fourier transform infrared spectroscopy (FT-IR). This revealed that EUP1 and EUP2 were acidic polysaccharides with an average molecular weight (MW) of 63 and 38 kDa, respectively. EUP1 mainly consisted of L-rhamnose and D-galactose in a molar ratio of 2.05:1, and EUP2 consisted of D-mannose, L-rhamnose, D-galactose, and D-arabinose in a molar ratio of 2.06:1:2.78:1. Furthermore, EUP exhibited considerable antioxidant potential for scavenging hydroxyl, superoxide anion, DPPH, and ABTS radicals. Therefore, EUP can be developed as a potential antioxidant for the functional food or pharmaceutical field.
Assuntos
Antioxidantes , Elaeagnaceae , Antioxidantes/farmacologia , Galactose , Ramnose , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologiaRESUMO
This research presents a novel, eco-friendly, vortex-assisted liquid-liquid microextraction (VALLME) approach, integrating hydrophobic deep eutectic solvents (DESs) with HPLC for the identification and quantification of nine specific flavonoids in Shanxi aged vinegar (SAV). The parameters of DES-VALLME, including the ratio of trioctylmethylammonium chloride to 1,4-butanediol (1:6), DES volume (150 µL), vortex duration (5 min), the concentration of NaCl (0.40 g), and centrifugation time (10 min), were optimized to achieve the maximum extraction efficiency of target substances. Under these optimal conditions, quantitative analyses performed via HPLC demonstrated a broad linear range of 0.20-50.00 µg/mL and correlation coefficients (r2) greater than 0.9944 for all nine calibration curves. The limits of detection (LOD) and limits of quantitation (LOQ) were 0.09-0.18 µg/mL and 0.30-0.60 µg/mL, respectively, ensuring high sensitivity. The relative standard deviations for intra-day and inter-day variability were within the acceptable range, 2.34-3.77% and 3.04-4.96%, respectively, demonstrating the method's reliability. The recovery rates ranged from 85.97% to 108.11%, underscoring the method's precision. This technique exhibited a significant enrichment effect (enrichment factor: 43 to 296) on SAV flavonoids. Notably, the eco-friendliness of this procedure was evaluated using the Analytical Eco-Scale, Green Analytical Procedure Index, and Analytical Greenness Metric. The results suggested that this technique is a viable green alternative to traditional flavonoid determination methods in SAV. In summary, this novel method provides a theoretical basis for assessing flavonoid content in SAV samples and tracing SAV products. This contribution has significant implications for enhancing analytical techniques in food chemistry and environmental science and the sustainable development of the food industry.
Assuntos
Ácido Acético , Microextração em Fase Líquida , Solventes/química , Solventes Eutéticos Profundos , Microextração em Fase Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Limite de Detecção , Meio AmbienteRESUMO
Rosmarinic acid (RosA) is a phenolic acid compound extracted from perilla. In this experiment, the Oxford cup method was used to verify the antibacterial activity of PerillaRosA against Escherichia coli, Staphylococcus aureus, Salmonella, and Bacillus subtilis. By polyacrylamide gel electrophoresis, the effect of RosA on bacterial nucleic acid and bacterial Na+ /K+ -ATP-ase activity, and scanning electron microscope to exploration of its antibacterial mechanism preliminarily. The results showed that RosA had antibacterial properties against all four bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of E. coli were 0.8 and 0.9 mg/ml, respectively. The MIC and MBC of Salmonella were 0.9 and 1.0 mg/ml, respectively. The MIC and MBC of S. aureus and B. subtilis were both 1.0 and 1.1 mg/ml. RosA has the bacteriostasis function, which can destroy bacterial cells and cell proteins and inhibit the activity of Na+ /K+ -ATP-ase in cells.
Assuntos
Perilla , Staphylococcus aureus , Trifosfato de Adenosina , Antibacterianos/farmacologia , Bacillus subtilis , Cinamatos , Depsídeos , Escherichia coli , Testes de Sensibilidade Microbiana , Salmonella , Ácido RosmarínicoRESUMO
Fusarium redolens was previously reported as a plant pathogen or an endophyte that is closely related to F. oxysporum, a notoriously significant soilborne phytopathogen. Subsequent studies demonstrated the unique nature of F. redolens, which was considered a distinct species that causes multiple symptoms on multiple hosts. It was recently identified as a pathogen that causes root rot of American ginseng. Currently, few high-quality F. redolens genome sequences exist in the public database. Here, we report the whole-genome sequence of F. redolens strain YP04, based on a hybrid assembly of long- and short-read sequencing with PacBio and Illumina platforms, respectively. The assembly consists of 40 configs with a total length of 52.8 Mb nuclear genomic DNA and 49.6 kb complete mitochondrial genomic DNA, and encodes a total of 18,985 genes, including 18,517 protein-coding genes and 469 RNA genes which were functionally annotated. In total, 4,606 proteins were identified in the pathogen-host interactions database, suggesting that they were likely involved in pathogenicity and host-pathogen interactions, while 41 secondary metabolite synthesis clusters were predicted and annotated. This is the first high-quality whole genome of F. redolens, providing an important community resource for genome evolution, host-pathogen interaction, and secondary metabolite biosynthesis studies.
Assuntos
Fusarium , Panax , Recursos Comunitários , Fusarium/genética , Doenças das PlantasRESUMO
American ginseng (Panax quinquefolium L.) originating from North America is one of important herbal medicine and economic crops . With the increasing market demand, China has become the third producer and the largest consumer country of American ginseng. However, continuous cropping obstacle has become the most serious problem for the production of American ginseng, and the continuous cropping of soils usually lead to accumulations of root fungal pathogens and increasing plant disease occurrence (1), root rot caused by the notorious soil-borne pathogenic fungi, Fusarium spp., results in a significant reduction of yield and quality of American ginseng. Investigation of American ginseng root rot was carried out in Liuba county, Shaanxi province, China from 2017 to 2019. About 20% of over 3-year-old American ginseng showed varied root rot symptoms in newly reclaimed fields, and more than 70% in continuous American ginseng planting fields. Among these root rot diseases, we found one kind of disease which shows symptoms of red leaves in initial stage and yellow or yellow brown lesions at the reed heads or taproots. The lesions mainly appear on the root surface; however, the vascular tissue has no discoloration. The aboveground parts become wilted and died, and the whole root appears dark brown rots. Fifteen Fusarium spp. isolates were obtained by cutting diseased rot roots into 5 × 5 mm2 pieces, disinfecting in 70% ethanol for 1 min, rinsing 2 ~ 3 times in sterile water for 1 min and isolating on PDA medium including 50 µg/mL streptomycin sulfate. All the isolates have identical morphological characteristics. The colony was white with curved and uplifted aerial hyphae in central region. The colony diameter was 48 ~51 mm after 6 days at room temperature. Microconidia were oval to cylindrical shape with 0 to 1 septa, ranged from 6.24 to10.09 µm long; the macroconidia were fusiform to conical with a hooked apical cell and a foot-shaped basal cell, usually 3 to 5 septa, ranged from 31.45 to 42.52 µm long. The chlamydospores were not found under our culture condition. Preliminary data analysis showed that the morphological characteristics of these isolates were consistent with the descriptions of Fusarium redolens (2). To clarify the fungus in the taxonomy , the rDNA internal transcribed spacer (ITS), the translation elongation factor 1 alpha (TEF1-α) and the RNA polymerase II subunit 1 (RPB1) fragments of two randomly selected isolates were amplified and sequenced. The sequences of the corresponding fragments of the two isolates were identical. The blast results in the GenBank and FUSARIUM-ID databases show the isolates belong to F. redolens (3). Previous study indicated F. redolens has an indistinguishable relative, F. hostae (4). Although the ITS sequence (MW331695) cannot provide enough information to distinguish them, the phylogenetic tree combined the sequence of TEF1-α (tempID: 2407237 ) and RPB1 (tempID: 2407229) clearly showed that the isolates are F. redolens. (Fig) The pathogenicity of a representative isolate, YP04, was tested on ginseng taproot by in vivo inoculation experiments with three replications. The taproot surface of 2-year-old healthy ginseng was washed and disinfested with 75% alcohol for 1 min and rinsed with sterile water, and dried. The surface of taproot was injured with sterilized steel needles and immersed in 1 × 106 /ml spore suspension (sterile water for control plants) for 30 min. The treatment and control plants were transplanted in 20 cm diameter flowerpots filled with sterilized humus and cultured in a greenhouse at 18-23°C. Six days after transplanting, the leaves began to turn red. The cortex of ginseng taproot showed yellow brown lesions and the vascular tissue turn to light yellow. Fifteen days after transplanting, the aboveground parts of treatment plants began to wilting and the taproots showed serious rots. no taproot rot was observed in the controls. The pathogen was re-isolated from the diseased taproots successfully. To our knowledge, this is the first report of F. redolens causing root rot of American ginseng in China.
RESUMO
Verticillium dahliae is a widely distributed soilborne pathogen that causes vascular wilt in more than 200 plant species. Defoliating and nondefoliating symptoms caused by the disease that result in either the loss or retention of leaves in infected plants, respectively, in hosts such as cotton, olive, and okra, divide the causal agent into defoliating and nondefoliating pathotypes. Our goal in this current work was to generate genome resources for the defoliating strain XJ592 and the nondefoliating strain XJ511 of V. dahliae isolated from cotton in China.
Assuntos
Genoma Fúngico , Plantas , Verticillium , China , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plantas/microbiologia , Verticillium/genéticaRESUMO
Ultrasound-assisted extraction (UAE) was applied to extract rutin (RU), nicotiflorin (NI), narcissoside (NA), kaempferol (KA), isorhamnetin (IS), quercetin (QU), and total flavonoids of Flos Sophorae Immaturus (TFFSI) from Flos Sophorae Immaturus (FSI). Through single factor test and response surface methodology (RSM), the optimal extraction conditions were concluded as follows: ethanol concentration 70%, time 30 min, temperature 61 °C, and liquid/solid ratio 15.30 mL/g, respectively. The actual extraction rates of RU, NI, NA, KA, IS, QU, and TFFSI were 14.6101%, 2.9310%, 7.1987%, 0.1041%, 0.4920%, 2.7998%, and 26.4260%, respectively. The experimental results demonstrated that the extraction method with accuracy and efficiency could be used for the comprehensive evaluation quality control of extracts from FSI. The antioxidant activities of hydroalcoholic extraction from FSI on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTSâ¢+), superoxide anion (â¢O2-) free radicals, and ferric reducing/antioxidant power (FRAP) were assessed. The results showed that the antioxidation activities of extracts on DPPH, ABTSâ¢+, and â¢O2- free radicals were reached 89.29%, 97.86%, and 56.61%, and 81.4% in FRAP at 1.0 mg/mL, respectively. The antioxidant capacity of FSI extract was positively correlated with the amount of total flavonoids.
Assuntos
Antioxidantes/química , Flavonoides/análise , Flores/química , Extração em Fase Sólida/métodos , Sophora/química , Ondas Ultrassônicas , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/químicaRESUMO
Limonin, a compound of highly oxidized triterpenoids, has potential functions in preventing or slowing the occurrences of many diseases. In this study, five different bacterial strains were isolated and identified from Citrus maxima (Burm.) Merr. cv. Shatian Yu. Morphological characteristics and 16S rRNA gene sequencing identified them as Bacillus spp, in which two limonin-producing endophytes named P and P9 were discovered by high-performance liquid chromatography and mass spectrometry using an inorganic salt medium and two natural media; also the production was greater in natural medium 1 (4.377 and 0.299 mg/L, respectively) than in natural medium 2 (0.159 and 0.025 mg/L, respectively). The growth and fermentation characteristics of strain P were studied, and during the liquid cultivation of Bacillus sp. P, limonin began to accumulate at the eighth hour in the inorganic salt medium, peaked at the 16th hour, and then decreased sharply. Single-factor experiments revealed that the optimum fermentation conditions for limonin production included 14-H-old cells, 15% inoculum, and 3 g/L glucose.
Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Citrus/microbiologia , Limoninas/biossínteseRESUMO
BACKGROUND: Nanomaterials that exhibit intrinsic enzyme-like characteristics have shown great promise as potential antibacterial agents. However, many of them exhibit inefficient antibacterial activity and biosafety problems that limit their usefulness. The development of new nanomaterials with good biocompatibility and rapid bactericidal effects is therefore highly desirable. Here, we show a new type of terbium oxide nanoparticles (Tb4O7 NPs) with intrinsic oxidase-like activity for in vitro and in vivo antibacterial application. RESULTS: We find that Tb4O7 NPs can quickly oxidize a series of organic substrates in the absence of hydrogen peroxide. The oxidase-like capacity of Tb4O7 NPs allows these NPs to consume antioxidant biomolecules and generate reactive oxygen species to disable bacteria in vitro. Moreover, the in vivo experiments showed that Tb4O7 NPs are efficacious in wound-healing and are protective of normal tissues. CONCLUSIONS: Our results reveal that Tb4O7 NPs have intrinsic oxidase-like activity and show effective antibacterial ability both in vitro and in vivo. These findings demonstrate that Tb4O7 NPs are effective antibacterial agents and may have a potential application in wound healing.
Assuntos
Antibacterianos/química , Escherichia coli , Nanopartículas Metálicas/química , Óxidos/química , Oxirredutases/química , Staphylococcus aureus , Térbio/química , Cicatrização , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Sobrevivência Celular , Escherichia coli/efeitos dos fármacos , Hemólise , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos BALB C , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Térbio/farmacologiaRESUMO
Quinoa crude polysaccharides (QPS) were extracted from Chenopodium quinoa Willd. The soluble non-starch polysaccharide fraction (QPS1) was subsequently purified by DEAE-52 cellulose and Sephadex G-50 gel chromatography, using QPS as raw materials. Its chemical structure was identified using FT-IR, NMR, AFM, SEM and Congo red staining. High performance gel permeation chromatography (HPGPC) was used to determine molecular weight, and composition by HPLC. QPS1, with a molecular weight of 34.0 kDa, was mainly composed of mannose, rhamnose, galacturonic acid, glucose, galactose, xylose and arabinose at a molar ratio of 2.63:2.40:1.64:6.28:1.95:2.48:5.01. In addition, we evaluated the ameliorative effects of QPS1 on the improvement of anti-cyclophosphamide (CTX)-induced immunosuppression in ICR mice. The result exhibited significantly immune-enhancing activity: QPS1 successfully improved the content of IFN-γ, IL-6, IFN-É, IgM and lysozyme (LYSO) in serum for three weeks, enhanced the phagocytic function of mononuclear macrophages and ameliorated delayed allergy in mice.
Assuntos
Adjuvantes Imunológicos/farmacologia , Chenopodium quinoa/embriologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Sementes/química , Animais , Configuração de Carboidratos , Citocinas/sangue , Hipersensibilidade Tardia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos ICR , Polissacarídeos/químicaRESUMO
This study investigated the contents of saponins and phenolic compounds in relation to their antioxidant activity and α-glucosidase inhibition activity of 7 colored quinoa varieties. The total saponin content was significantly different among 7 varieties and ranged from 7.51 to 12.12 mg OAE/g DW. Darker quinoa had a higher content of phenolic compounds, as well as higher flavonoids and antioxidant activity than that of light varieties. Nine individual phenolic compounds were detected in free and bound form, with gallic acid and ferulic acid representing the major compounds. The free and bound phenolic compounds (gallic acid and ferulic acid in particular) exhibited high linear correlation with their corresponding antioxidant values. In addition, the free phenolic extracts from colored quinoa exhibited higher inhibitory activity against α-glucosidase than the bound phenolic extracts. These findings imply that colored quinoa with abundant bioactive phytochemicals could be an important natural source for preparing functional food.
Assuntos
Antioxidantes/farmacologia , Chenopodium quinoa/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Fenóis/farmacologia , Saponinas/farmacologia , alfa-Glucosidases/metabolismo , Animais , Antioxidantes/análise , Flavonoides/análise , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/análise , Fenóis/análise , Ratos , Saponinas/análiseRESUMO
Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (blm, wrn, and recq4) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.
Assuntos
Trifosfato de Adenosina/química , Proteínas Aviárias/química , Galinhas , Multimerização Proteica , RecQ Helicases/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Cristalografia por Raios X , Domínios Proteicos , Estrutura Quaternária de Proteína , RecQ Helicases/genética , RecQ Helicases/metabolismoRESUMO
Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.
Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Tolerância ao Sal , Fatores de Transcrição/genética , Secas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação para CimaRESUMO
The FANCJ-like protein family is a class of ATP-dependent helicases that can catalytically unwind duplex DNA along the 5'-3' direction. It is involved in the processes of DNA damage repair, homologous recombination and G-quadruplex DNA unwinding, and plays a critical role in maintaining genome integrity. In this study, we systemically analyzed FNACJ-like proteins from 47 eukaryotic species and discussed their sequences diversity, origin and evolution, motif organization patterns and spatial structure differences. Four members of FNACJ-like proteins, including XPD, CHL1, RTEL1 and FANCJ, were found in eukaryotes, but some of them were seriously deficient in most fungi and some insects. For example, the Zygomycota fungi lost RTEL1, Basidiomycota and Ascomycota fungi lost RTEL1 and FANCJ, and Diptera insect lost FANCJ. FANCJ-like proteins contain canonical motor domains HD1 and HD2, and the HD1 domain further integrates with three unique domains Fe-S, Arch and Extra-D. Fe-S and Arch domains are relatively conservative in all members of the family, but the Extra-D domain is lost in XPD and differs from one another in rest members. There are 7, 10 and 2 specific motifs found from the three unique domains respectively, while 5 and 12 specific motifs are found from HD1 and HD2 domains except the conserved motifs reported previously. By analyzing the arrangement pattern of these specific motifs, we found that RTEL1 and FANCJ are more closer and share two specific motifs Vb2 and Vc in HD2 domain, which are likely related with their G-quadruplex DNA unwinding activity. The evidence of evolution showed that FACNJ-like proteins were originated from a helicase, which has a HD1 domain inserted by extra Fe-S domain and Arch domain. By three continuous gene duplication events and followed specialization, eukaryotes finally possessed the current four members of FANCJ-like proteins.
Assuntos
Eucariotos/química , Evolução Molecular , Proteína do Grupo de Complementação A da Anemia de Fanconi/química , Proteína do Grupo de Complementação A da Anemia de Fanconi/fisiologia , Animais , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Humanos , Estrutura Terciária de ProteínaRESUMO
The fermentation process of Chinese Baijiu's fermented grains involves the intricate succession and metabolism of microbial communities, collectively shaping the Baijiu's quality. Understanding the composition and succession of these living microbial communities within fermented grains is crucial for comprehending fermentation and flavor formation mechanisms. However, conducting high-throughput analysis of living microbial communities within the complex microbial system of fermented grains poses significant challenges. Thus, this study addressed this challenge by devising a high-throughput analysis framework using light-flavor Baijiu as a model. This framework combined propidium monoazide (PMA) pretreatment technology with amplicon sequencing techniques. Optimal PMA treatment parameters, including a concentration of 50 µM and incubation in darkness for 5 min followed by an exposure incubation period of 5 min, were identified. Utilizing this protocol, viable microorganism biomass ranging from 8.71 × 106 to 1.47 × 108 copies/µL was successfully detected in fermented grain samples. Subsequent amplicon sequencing analysis revealed distinct microbial community structures between untreated and PMA-treated groups, with notable differences in relative abundance compositions, particularly in dominant species such as Lactobacillus, Bacillus, Pediococcus, Saccharomycopsis, Issatchenkia and Pichia, as identified by LEfSe analysis. The results of this study confirmed the efficacy of PMA-amplicon sequencing technology for analyzing living microbial communities in fermented grains and furnished a methodological framework for investigating living microbial communities in diverse traditional fermented foods. This technical framework holds considerable significance for advancing our understanding of the fermentation mechanisms intrinsic to traditional fermented foods.
RESUMO
In this study, vortex-assisted liquid-liquid microextraction (VA-LLME) based on hydrophobic deep eutectic solvents (HDES) was used to efficiently and sustainably extract five phenolic acids and tetramethylpyrazine (TMP) from Shanxi aged vinegar (SAV). The VA-LLME technique was employed to investigate the extraction mechanism of HDES with the best extraction performance for the target compounds using a conductor-like screening model for real solvents (COSMO-RS). An artificial neural network combined with a genetic algorithm (ANN-GA) was developed to optimize the extraction conditions based on single-factor and response surface methodology, while also analyzing the interactive effects on the phenolic acids and TMP in the extracted solution during the extraction phase. The optimized conditions were determined, and the greenness of the procedure was evaluated using an analytical greenness metric, indicating that this technique can serve as a green alternative for the determination of phenolic acids and TMP in SAV.
RESUMO
A novel dispersive solid-phase microextraction method based on a metal-organic framework (MIL-100(Fe)) combined with a dispersive liquid-liquid microextraction technique was proposed for the extraction and enrichment of four insecticides in beverages. The qualitative and quantitative analysis of these insecticides was conducted using HPLC-MS/MS. To optimize the extraction process, several parameters were investigated, and the main variables were optimized using CCD-based RSM. The developed method displayed a wide linear range of 1.000-1000 ng/L and R2 values >0.993 for all four calibration curves. The method demonstrated high sensitivity, with LODs and LOQs of 0.3-0.6 ng/L and 0.8-1.0 ng/L, respectively. In addition, the greenness of the proposed method was assessed using the Complex GAPI tool, and the results showed that the proposed method exhibits benefits, such as minimal usage of organic solvents and negligible matrix influence, making it a suitable method for the detection of insecticide residues in beverages.
Assuntos
Bebidas , Contaminação de Alimentos , Inseticidas , Microextração em Fase Líquida , Resíduos de Praguicidas , Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Microextração em Fase Líquida/métodos , Cromatografia Líquida de Alta Pressão , Inseticidas/análise , Inseticidas/isolamento & purificação , Inseticidas/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/isolamento & purificação , Resíduos de Praguicidas/química , Espectrometria de Massas em Tandem/métodos , Contaminação de Alimentos/análise , Bebidas/análise , Microextração em Fase Sólida/métodos , Estruturas Metalorgânicas/química , Espectrometria de Massa com Cromatografia LíquidaRESUMO
This study aimed to explore key physicochemical characteristics and evolutionary patterns of microbial community structure during the fermentation of aged vinegar. The correlation between microorganisms and physicochemical characteristics during fermentation was examined. The results revealed significant differences in genera at different stages of fermentation. The dominant bacteria in R1 were Bacillus, Lactobacillus, Aspergillus, and Issatchenkia. During the R2 fermentation stage, Lactobacillus, Acetobacter, and Saccharomyces exhibited an upward trend and finally became the dominant bacteria. Aspergillus was the main bacterial genus at the end of overall fermentation. The correlation analysis showed that the bacterial genera significantly positively and negatively correlated with reducing sugars and amino acid nitrogen were the same in Cuqu. Similarly, the bacterial genera significantly positively and negatively correlated with pH and saccharification power were the same. pH, reducing sugar, and saccharification ability were mainly positively correlated with bacterial genera during fermentation. Further, studies found that the overall correlation between fungal communities and physicochemical characteristics was weaker than the correlation with bacteria during fermentation.