Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Nature ; 598(7879): 59-64, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616054

RESUMO

Effects connected with the mathematical theory of knots1 emerge in many areas of science, from physics2,3 to biology4. Recent theoretical work discovered that the braid group characterizes the topology of non-Hermitian periodic systems5, where the complex band energies can braid in momentum space. However, such braids of complex-energy bands have not been realized or controlled experimentally. Here, we introduce a tight-binding lattice model that can achieve arbitrary elements in the braid group of two strands 𝔹2. We experimentally demonstrate such topological complex-energy braiding of non-Hermitian bands in a synthetic dimension6,7. Our experiments utilize frequency modes in two coupled ring resonators, one of which undergoes simultaneous phase and amplitude modulation. We observe a wide variety of two-band braiding structures that constitute representative instances of links and knots, including the unlink, the unknot, the Hopf link and the trefoil. We also show that the handedness of braids can be changed. Our results provide a direct demonstration of the braid-group characterization of non-Hermitian topology and open a pathway for designing and realizing topologically robust phases in open classical and quantum systems.

2.
Proc Natl Acad Sci U S A ; 121(17): e2401514121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640346

RESUMO

Near-field radiative heat transfer has recently attracted increasing interests for its applications in energy technologies, such as thermophotovoltaics. Existing works, however, are restricted to time-independent systems. Here, we explore near-field radiative heat transfer between two bodies under time modulation by developing a rigorous fluctuational electrodynamics formalism. We demonstrate that time modulation can result in the enhancement, suppression, elimination, or reversal of radiative heat flow between the two bodies, and can be used to create a radiative thermal diode with an infinite contrast ratio, as well as a near-field radiative heat engine that pumps heat from the cold to the hot bodies. The formalism reveals a fundamental symmetry relation in the radiative heat transfer coefficients that underlies these effects. Our results indicate the significant capabilities of time modulation for managing nanoscale radiative heat flow.

3.
Nature ; 588(7836): 39-47, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268862

RESUMO

Artificial intelligence tasks across numerous applications require accelerators for fast and low-power execution. Optical computing systems may be able to meet these domain-specific needs but, despite half a century of research, general-purpose optical computing systems have yet to mature into a practical technology. Artificial intelligence inference, however, especially for visual computing applications, may offer opportunities for inference based on optical and photonic systems. In this Perspective, we review recent work on optical computing for artificial intelligence applications and discuss its promise and challenges.

4.
Proc Natl Acad Sci U S A ; 120(34): e2300856120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579165

RESUMO

Space heating and cooling consume ~13% of global energy every year. The development of advanced materials that promote energy savings in heating and cooling is gaining increasing attention. To thermally isolate the space of concern and minimize the heat exchange with the outside environment has been recognized as one effective solution. To this end, here, we develop a universal category of colorful low-emissivity paints to form bilayer coatings consisting of an infrared (IR)-reflective bottom layer and an IR-transparent top layer in colors. The colorful visual appearance ensures the aesthetical effect comparable to conventional paints. High mid-infrared reflectance (up to ~80%) is achieved, which is more than 10 times as conventional paints in the same colors, efficiently reducing both heat gain and loss from/to the outside environment. The high near-IR reflectance also benefits reducing solar heat gain in hot days. The advantageous features of these paints strike a balance between energy savings and penalties for heating and cooling throughout the year, providing a comprehensive year-round energy-saving solution adaptable to a wide variety of climatic zones. Taking a typical midrise apartment building as an example, the application of our colorful low-emissivity paints can realize positive heating, ventilation, and air conditioning energy saving, up to 27.24 MJ/m2/y (corresponding to the 7.4% saving ratio). Moreover, the versatility of the paint, along with its applicability to diverse surfaces of various shapes and materials, makes the paints extensively useful in a range of scenarios, including building envelopes, transportation, and storage.

5.
Proc Natl Acad Sci U S A ; 119(15): e2110018119, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377805

RESUMO

SignificanceThermal diffusion is dissipative and strongly related to non-Hermitian physics. At the same time, non-Hermitian Weyl systems have spurred tremendous interest across photonics and acoustics. This correlation has been long ignored and hence shed little light upon the question of whether the Weyl exceptional ring (WER) in thermal diffusion could exist. Intuitively, thermal diffusion provides no real parameter dimensions, thus prohibiting a topological nature and WER. This work breaks this perception by imitating synthetic dimensions via two spatiotemporal advection pairs. The WER is achieved in thermal diffusive systems. Both surface-like and bulk states are demonstrated by coupling two WERs with opposite topological charges. These findings extend topological notions to diffusions and motivate investigation of non-Hermitian diffusive and dissipative control.

6.
Nano Lett ; 24(15): 4521-4527, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565218

RESUMO

Increasing near-field radiative heat transfer between two bodies separated by a vacuum gap is crucial for enhancing the power density in radiative energy transport and conversion devices. However, the largest radiative heat transfer coefficient between two realistic materials at room temperature is limited to around 2000 W/(m2·K) for a gap of 100 nm. Here, analogous to conventional plate-fin heat exchangers based on convection, we introduce the concept of a nanophotonic heat exchanger, which enhances near-field radiative heat transfer using two bodies with interpenetrating gratings. Our calculations, based on rigorous fluctuational electrodynamics, show that the radiative heat transfer coefficient between the bodies separated by a 100 nm gap can significantly exceed 2000 W/(m2·K) by increasing the aspect ratios of the gratings. We develop a semianalytical heat transfer model that agrees well with the rigorous calculations for design optimization. Our work opens new opportunities for enhancing near-field radiative heat transfer between any materials.

7.
Phys Rev Lett ; 132(3): 033803, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307059

RESUMO

Reducing geometrical complexity while preserving desired wave properties is critical for proof-of-concept studies in wave physics, as evidenced by recent efforts to realize photonic synthetic dimensions, isospectrality, and hyperbolic lattices. Laughlin's topological pump, which elucidates quantum Hall states in cylindrical geometry with a radial magnetic field and a time-varying axial magnetic flux, is a prime example of these efforts. Here we propose a two-dimensional dynamical photonic system for the topological pumping of pseudospin modes by exploiting synthetic frequency dimensions. The system provides the independent control of pseudomagnetic fields and electromotive forces achieved by the interplay between mode-dependent and mode-independent gauge fields. To address the axial open boundaries and azimuthal periodicity of the system, we define the adjusted local Chern marker with rotating azimuthal coordinates, proving the nontrivial topology of the system. We demonstrate the adiabatic pumping for crosstalk-free frequency conversion with wave front molding. Our approach allows for reproducing Laughlin's thought experiment at room temperature with a scalable setup.

8.
Phys Rev Lett ; 132(7): 073804, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427898

RESUMO

Metasurfaces and photonic crystals have revolutionized classical and quantum manipulation of light and opened the door to studying various optical singularities related to phases and polarization states. However, traditional nanophotonic devices lack reconfigurability, hindering the dynamic switching and optimization of optical singularities. This paper delves into the underexplored concept of tunable bilayer photonic crystals (BPhCs), which offer rich interlayer coupling effects. Utilizing silicon nitride-based BPhCs, we demonstrate tunable bidirectional and unidirectional polarization singularities, along with spatiotemporal phase singularities. Leveraging these tunable singularities, we achieve dynamic modulation of bound-state-in-continuum states, unidirectional guided resonances, and both longitudinal and transverse orbital angular momentum. Our work paves the way for multidimensional control over polarization and phase, inspiring new directions in ultrafast optics, optoelectronics, and quantum optics.

9.
Opt Express ; 31(12): 18871-18887, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381317

RESUMO

Coherent programmable integrated photonics circuits have shown great potential as specialized hardware accelerators for deep learning tasks, which usually involve the use of linear matrix multiplication and nonlinear activation components. We design, simulate and train an optical neural network fully based on microring resonators, which shows advantages in terms of device footprint and energy efficiency. We use tunable coupled double ring structures as the interferometer components for the linear multiplication layers and modulated microring resonators as the reconfigurable nonlinear activation components. We then develop optimization algorithms to train the direct tuning parameters such as applied voltages based on the transfer matrix method and using automatic differentiation for all optical components.

10.
Phys Rev Lett ; 130(9): 096902, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930900

RESUMO

We show that the spatial coherence of thermal radiation can be manipulated in time-modulated photonic systems supporting surface polaritons. We develop a fluctuational electrodynamics formalism for such systems to calculate the cross-spectral density tensor of the emitted thermal electromagnetic fields in the near-field regime. Our calculations indicate that, due to time-modulation, spatial coherence can be transferred between different frequencies, and correlations between different frequency components become possible. All these effects are unique to time-modulated systems. We also show that the decay rate of optical emitters can be controlled in the proximity of such time-modulated structure. Our findings open a promising avenue toward coherence control in thermal radiation, dynamical thermal imaging, manipulating energy transfer among thermal or optical emitters, efficient near-field radiative cooling, and engineering spontaneous emission rates of molecules.

11.
Phys Rev Lett ; 130(14): 146202, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084437

RESUMO

Unitary control changes the absorption and emission of an object by transforming the external light modes. It is widely used and underlies coherent perfect absorption. Yet two basic questions remain unanswered: For a given object under unitary control, what absorptivity α, emissivity e, and their contrast δ=e-α are attainable? How to obtain a given α, e, or δ? We answer both questions using the mathematics of majorization. We show that unitary control can achieve perfect violation or preservation of Kirchhoff's law in nonreciprocal objects, and uniform absorption or emission for any object.

12.
Phys Rev Lett ; 131(26): 263801, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215381

RESUMO

Spin textures with various topological orders are of great theoretical and practical interest. Hopfion, a spin texture characterized by a three-dimensional topological order was recently realized in electronic spin systems. Here, we show that monochromatic light can be structured such that its photonic spin exhibits a hopfion texture in the three-dimensional real space. We also provide ways to construct spin textures of arbitrary Hopf charges. When extending the system to four dimensions by introducing a parameter dimension, a new type of topological defect in the form of a monopole loop in photonic spin is encountered. Each point on the loop is a topological spin defect in three dimensions, and the loop itself carries quantized Hopf charges. Such photonic spin texture and defect may find application in control and sensing of nanoparticles, and optical generation of topological texture in motions of particles or fluids.

13.
Phys Rev Lett ; 130(8): 083601, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898123

RESUMO

Non-Abelian gauge fields give rise to nontrivial topological physics. Here we develop a scheme to create an arbitrary SU(2) lattice gauge field for photons in the synthetic frequency dimension using an array of dynamically modulated ring resonators. The photon polarization is taken as the spin basis to implement the matrix-valued gauge fields. Using a non-Abelian generalization of the Harper-Hofstadter Hamiltonian as a specific example, we show that the measurement of the steady-state photon amplitudes inside the resonators can reveal the band structures of the Hamiltonian, which show signatures of the underlying non-Abelian gauge field. These results provide opportunities to explore novel topological phenomena associated with non-Abelian lattice gauge fields in photonic systems.

14.
Phys Rev Lett ; 131(19): 196302, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000410

RESUMO

Recent experiments, at room temperature, have shown that near-field radiative heat transfer (NFRHT) via surface phonon polaritons (SPhPs) exceeds the blackbody limit by several orders of magnitude. Yet, SPhP-mediated NFRHT at cryogenic temperatures remains experimentally unexplored. Here, we probe thermal transport in nanoscale gaps between a silica sphere and a planar silica surface from 77-300 K. These experiments reveal that cryogenic NFRHT has strong contributions from SPhPs and does not follow the T^{3} temperature (T) dependence of far-field thermal radiation. Our modeling based on fluctuational electrodynamics shows that the temperature dependence of NFRHT can be related to the confinement of heat transfer to two narrow frequency ranges and is well accounted for by a simple analytical model. These advances enable detailed NFRHT studies at cryogenic temperatures that are relevant to thermal management and solid-state cooling applications.

15.
Nature ; 546(7658): 387-390, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28617463

RESUMO

Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

16.
Nano Lett ; 22(1): 448-452, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939814

RESUMO

The Landsberg limit represents the ultimate efficiency limit of solar energy harvesting. Reaching this limit requires the use of nonreciprocal elements. The existing device configurations for attaining the Landsberg limit, however, are very complicated. Here, we introduce the concept of a nonreciprocal multijunction solar cell and show that such a cell can reach the Landsberg limit in the idealized situation where an infinite number of layers are used. We also show that such a nonreciprocal multijunction cell outperforms a standard reciprocal multijunction cell for a finite number of layers. Our work significantly simplifies the device configuration required to reach the ultimate limit of solar energy conversion and points to a pathway toward using nonreciprocity to improve solar energy harvesting.


Assuntos
Energia Solar , Luz Solar
17.
Small ; 18(51): e2205091, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328709

RESUMO

Metal-free polymer daytime radiative cooling coatings with hierarchical eye-like air pores are proposed and fabricated with a super-large-scale film-stretching method. The hierarchically porous film (HPF) can be further coated with polymethyl methacrylate (PMMA) micro-hemispheres, forming coated HPF (cHPF), which do not dramatically change the optical or thermal properties. The cHPF is slightly better with a lower solar absorptivity (2.4%) and a higher thermal emissivity over the atmospheric transparency window (90.1%). The low solar absorptivity is due to the strong scattering of the hierarchical eye-like air pores, while the molecular vibrations and the focusing effect of the PMMA micro-hemispheres contribute to the high emissivity. An average mid-day temperature reduction of 7.92 °C is achieved relative to the air temperature, and the average cooling power reaches 116.0 W m-2 , which are much better than the cooling performances of the commercial cooling cushion. During the day, the cHPF-covered simulated building is up to 6.47 and 4.84 °C cooler than the ambient and the white painted counterpart, respectively. The film is durable and resistant to chemical etching, and very promising to use globally, especially in warm and tropical regions.

18.
Opt Express ; 30(15): 26794-26806, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236865

RESUMO

Direct solvers are a common method for solving finite difference frequency domain (FDFD) systems that arise in numerical solutions of Maxwell's equations. In a direct solver, one factorizes the system matrix. Since the system matrix is typically very sparse, the fill-in of these factors is the single most important computational consideration in terms of time complexity and memory requirements. As a result, it is of great interest to determine ways in which this fill-in can be systematically reduced. In this paper, we show that in the context of commonly used perfectly matched boundary layer methods, the choice of boundary condition behind the perfectly matched boundary layer can be exploited to reduce fill-in incurred during the factorization, leading to significant gains of up to 40% in the efficiency of the factorization procedure. We illustrate our findings by solving linear systems and eigenvalue problems associated with the FDFD method.

19.
Opt Express ; 30(4): 6413-6424, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209580

RESUMO

A line search in a gradient-based optimization algorithm solves the problem of determining the optimal learning rate for a given gradient or search direction in a single iteration. For most problems, this is determined by evaluating different candidate learning rates to find the optimum, which can be expensive. Recent work has provided an efficient way to perform a line search with the use of the Shanks transformation of a Born series derived from the Lippman-Schwinger formalism. In this paper we show that the cost for performing such a line search can be further reduced with the use of the method of the Schur complement domain decomposition, which can lead to a 10-fold total speed-up resulting from the reduced number of iterations to convergence and reduced wall-clock time per iteration.

20.
Opt Express ; 30(21): 39222-39233, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258467

RESUMO

Detection of infrared (IR) photons in a room-temperature IR camera is carried out by a two-dimensional array of microbolometer pixels which exhibit temperature-sensitive resistivity. When IR light coming from the far-field is focused onto this array, microbolometer pixels are heated up in proportion to the temperatures of the far-field objects. The resulting resistivity change of each pixel is measured via on-chip electronic readout circuit followed by analog to digital (A/D) conversion, image processing, and presentation of the final IR image on a separate information display screen. In this work, we introduce a new nanophotonic detector as a minimalist alternative to microbolometer such that the final IR image can be presented without using the components required for A/D conversion, image processing and display. In our design, the detector array is illuminated with visible laser light and the reflected light itself carries the IR image which can be directly viewed. We numerically demonstrate this functionality using a resonant waveguide grating structure made of typical materials such as silicon carbide, silicon nitride, and silica for which lithography techniques are well-developed. We clarify the requirements to tackle the issues of fabrication nonuniformities and temperature drifts in the detector array. We envision a potential near-eye display device for direct IR vision based on timely use of diffractive optical waveguides in augmented reality headsets and tunable visible laser sources. Our work indicates a way to achieve thermal IR vision for suitable use cases with lower cost, smaller form factor, and reduced power consumption compared to the existing thermal IR cameras.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa