Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Cell Physiol ; 239(5): e31226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591363

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is essential for understanding muscle function and improving the quality of mutton. While circular RNA (circRNA) has a critical function in myofiber type transformation, the specific mechanisms are not yet fully understood. Prior evidence indicates that circular ubiquitin-specific peptidase 13 (circUSP13) can promote myoblast differentiation by acting as a ceRNA, but its potential role in myofiber switching is still unknown. Herein, we found that circUSP13 enhanced slow myosin heavy chain (MyHC-slow) and suppressed MyHC-fast expression in goat primary myoblasts (GPMs). Meanwhile, circUSP13 evidently enhanced the remodeling of the mitochondrial network while inhibiting the autophagy of GPMs. We obtained fast-dominated myofibers, via treatment with rotenone, and further demonstrated the positive role of circUSP13 in the fast-to-slow transition. Mechanistically, activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway significantly impaired the slow-to-fast shift in fully differentiated myotubes, which was restored by circUSP13 or IGF1 overexpression. In conclusion, circUSP13 promoted the fast-to-slow myofiber type transition through MAPK/ERK signaling in goat skeletal muscle. These findings provide novel insights into the role of circUSP13 in myofiber type transition and contribute to a better understanding of the genetic mechanisms underlying meat quality.


Assuntos
Cabras , Sistema de Sinalização das MAP Quinases , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Cadeias Pesadas de Miosina , RNA Circular , Animais , Autofagia/fisiologia , Diferenciação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Desenvolvimento Muscular/genética , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , RNA Circular/metabolismo
2.
Microb Pathog ; : 106809, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038499

RESUMO

Bifidobacterium animalis subsp. lactis BLa80 is a new probiotic strain with extensive applications in food products both domestically and internationally. Given the rising consumption of this probiotic, its safety assessment is increasingly crucial in the food industry. This study evaluates the safety of strain BLa80 using a combination of in vitro and in vivo assays along with genomic analysis. Methods included exposing the strain to artificial gastric and intestinal fluids, as well as a medium containing bile salts, to stimulate human digestive conditions. The strain showed high tolerance to gastric fluid at pH of 2.5 and to 0.3% bile salts. It maintained a 99.92% survival rate in intestinal fluid. Additional tests assessed hemolytic activity, antibiotic susceptibility (revealing sensitivity to 7 antibiotics), and biogenic amine production using HPLC-ELSD, confirming the absence of histamine, and other harmful amines. Bile salt hydrolase activity was demonstrated qualitatively, and metabolic byproducts were quantitatively analyzed using a D-/L-lactic acid assay kit, showing that BLa80 produces 1.48 mg/mL of L-lactic acid and no harmful D-lactic acid. Genomic analysis confirmed the absence of virulence or pathogenicity genes, and a 90-day oral toxicity study in rats confirmed no toxic effects at various doses. Overall, these findings support the safety classification of the strain BLa80.

3.
FASEB J ; 37(7): e23044, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342905

RESUMO

RUNX1T1 (Runt-related transcription factor 1, translocated to 1) plays a wide-ranging and diverse role in cellular development, including hematopoiesis and adipogenesis. However, little is known about the function of RUNX1T1 in the skeletal muscle development. Here, we assessed the impact of RUNX1T1 on the proliferation and myogenic differentiation of goat primary myoblasts (GPMs). It was observed that RUNX1T1 is highly expressed during the early stages of myogenic differentiation and the fetal stage. Moreover, the knockdown of RUNX1T1 promotes the proliferation and inhibits myogenic differentiation and mitochondrial biogenesis of GPMs. RNA sequencing analysis revealed that significantly differentially expressed genes in RUNX1T1 knockdown cells were enriched in the calcium signaling pathway. Additionally, we discovered that RUNX1T1 regulates alternative splicing (AS) events involved in myogenesis. We also show that silencing RUNX1T1 blocked the Ca2+ -CAMK signaling pathway and reduced the expression levels of muscle-specific isoforms of recombinant rho associated coiled coil containing crotein kinase 2 (ROCK2) during myogenic differentiation, partially explaining why RUNX1T1 deficiency leads to the impairment of myotube formation. These findings suggest that RUNX1T1 is a novel regulator of myogenic differentiation that regulates the calcium signaling pathway and AS of ROCK2. Overall, our results highlight the critical role of RUNX1T1 in myogenesis and broaden our understanding of myogenic differentiation.


Assuntos
Processamento Alternativo , Sinalização do Cálcio , Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Cabras , Animais
4.
FASEB J ; 37(6): e22989, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199674

RESUMO

Neuromedin S (NMS) is a neuroregulatory substance and has many important roles in regulating physiological functions in animal cells, while their specific functions and mechanisms in Leydig cells (LCs) of the testis remain unclear. The current study aims to investigate the role and potential mechanisms of NMS and its receptors in regulating steroidogenesis and proliferation in goat LCs. We found that NMS and its receptors were mainly expressed in LCs of goat testes at different ages (1-day-old, 3-month-old, and 9-month-old), and the highest expressions detected at age three months. NMS addition significantly enhanced the testosterone secretion, STAR, CYP11A1, 3BHSD, and CYP17A1 expressions, cell proliferation, and PCNA expression in vitro cultured goat LCs. Mechanistically, NMS addition increased G1/S cell population, the expressions of CCND1, CDK4 and CDK6, the activities of SOD2 and CAT, and enhanced the mitochondrial fusion, the production of ATP, and mitochondrial membrane potential, while inhibited cellular ROS production, and maintained a low ubiquitination level of mitochondrial proteins. Notably, these effects of NMS addition on goat LCs were suppressed by co-treatment with NMUR2 knockdown. Therefore, these data suggest that activating NMUR2 with NMS enhances testosterone production and cell proliferation in goat LCs through modulating mitochondrial morphology, function, and autophagy. These findings may provide a novel view of the regulatory mechanisms involved in male sexual maturation.


Assuntos
Cabras , Células Intersticiais do Testículo , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Cabras/metabolismo , Testosterona/metabolismo , Mitocôndrias/metabolismo , Proliferação de Células
5.
FASEB J ; 37(11): e23273, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874265

RESUMO

N6-methyladenosine (m6A) plays a crucial role in many bioprocesses across species, but its function in granulosa cells during oocyte maturation is not well understood in animals, especially domestic animals. We observed an increase in m6A methyltransferase-like 3 (METTL3) in granulosa cells during oocyte maturation in Haimen goats. Our results showed that knockdown of METTL3 disrupted the cell cycle in goat granulosa cells, leading to aggravated cell apoptosis and inhibition of cell proliferation and hormone secretion. Mechanistically, METTL3 may regulate the cell cycle in goat granulosa cells by mediating Aurora kinase B (AURKB) mRNA degradation in an m6A-YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) manner and participating in AURKB transcription via the Cyclin D1 (CCND1)-Retinoblastoma protein (RB)-E2F transcription factor 1 (E2F1) pathway. Overall, our study highlights the essential role of METTL3 in granulosa cells during oocyte maturation in Haimen goats. These findings provide a theoretical basis and technical means for understanding how RNA methylation participates in oocyte maturation through granulosa cells.


Assuntos
Cabras , Metiltransferases , Animais , Feminino , Metiltransferases/genética , Metiltransferases/metabolismo , Cabras/metabolismo , Aurora Quinase B , Ciclina D1/genética , Ciclo Celular
6.
FASEB J ; 37(11): e23212, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773760

RESUMO

As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.


Assuntos
MicroRNAs , Zearalenona , Animais , Feminino , Zearalenona/metabolismo , Zearalenona/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Zea mays/genética , Zea mays/metabolismo , MicroRNAs/metabolismo , Cabras/metabolismo , Estresse Oxidativo , Transdução de Sinais
7.
J Sci Food Agric ; 104(6): 3256-3264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38087413

RESUMO

BACKGROUND: Biogenic amines (BAs) in high concentrations are toxic and may cause a series of health symptoms. A sensitive measurement of BA levels is essential for human health. Capillary electrophoresis (CE) has emerged for the separation of eight BAs due to simple sample preparation and highly efficient separation. However, an important drawback for CE is low sensitivity. Magnetic solid-phase extraction (MSPE) has become a technique of interest owing to its brief operation and low solvent consumption. Hence, MSPE as a pretreatment has great potential to improve CE sensitivity for the analysis of BAs in complex food. RESULTS: Results showed that the Pt-Co-MWCNTs-COOH possessed strong magnetism, good reusability, and high adsorptive ability toward eight biogenic amines based on the hydrogen bonding between the -COOH of Pt-Co-MWCNTs-COOH and -NH2 groups of BAs. Using it as an adsorbent, a magnetic solid-phase extraction coupled with capillary electrophoresis (MSPE-CE) method was developed to effectively extract and sensitively analyze eight BAs. Under optimal conditions, the MSPE-CE method has wide linearities (10.0-1000.0 µg L-1 ) and low limits of detection (1.0-6.1 µg L-1 ). The accuracy of the developed method yielded recovery values from 82.07% to 102.58%. Meanwhile, the BAs contents in two samples were analyzed using the MSPE-CE method, with the results consistent with those detected by a high-performance liquid chromatography method. CONCLUSION: Given those advantages, the established MSPE-CE method promises the practical guidance of monitoring a variety of BAs and provides a foundation for the detection of other food hazards. © 2023 Society of Chemical Industry.


Assuntos
Aminas Biogênicas , Eletroforese Capilar , Humanos , Eletroforese Capilar/métodos , Cromatografia Líquida de Alta Pressão/métodos , Aminas Biogênicas/análise , Extração em Fase Sólida/métodos , Fenômenos Magnéticos , Limite de Detecção
8.
FASEB J ; 36(7): e22370, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635726

RESUMO

MicroRNAs (miRNAs) are evolutionarily conserved endogenous small non-coding RNAs that play critical roles in skeletal muscle development. In this study, we identified putative miRNAs that were differentially expressed in the longissimus dorsi muscle between fetus (75 days of pregnancy) and lamb (1 day of age). We detected 1208 miRNAs, 313 of which were differentially expressed. In particular, we found that miR-145-5p was differentially and highly expressed in lamb skeletal muscle. In addition, our results demonstrated that overexpression of miR-145-5p inhibited the differentiation and apoptosis of goat primary myoblasts (GPMs), whereas knockdown of miR-145-5p had the opposite effect. The coding domain sequence (CDS) of ubiquitin-specific peptidase 13 (USP13) was predicted and validated as a target of miR-145-5p. We also demonstrated that the influence as a key regulator of GPMs differentiation is primarily mediated by targeting and inhibiting USP13. Taken together, these results revealed a novel pathway in skeletal muscle development in which miR-145-5p targets CDS region of USP13 to regulate differentiation and apoptosis of GPMs.


Assuntos
Cabras , MicroRNAs , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Cabras/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mioblastos/metabolismo , Ovinos , Proteases Específicas de Ubiquitina/metabolismo
9.
FASEB J ; 36(1): e22097, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935184

RESUMO

Circular RNAs (circRNAs) are an indispensable element of post-transcriptional gene regulation, influencing a variety of biological processes including myogenic differentiation; however, little is known about the function of circRNA in goat myogenic differentiation. Using RNA-sequencing data from our laboratory, we explored the influences of circUSP13, as a candidate circRNA, on myoblast differentiation since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). In in vitro experiments, circUSP13 significantly promoted differentiation and inhibited apoptosis in goat primary myoblasts. Mechanistically, circUSP13 localized with miR-29c in the cytoplasm of goat myoblasts to regulate IGF1 expression. We further demonstrated that circUSP13 sponges miR-29c, promoting IGF1 expression that upregulated the expression of MyoG and MyHC. Thus, our results identified circUSP13 as a molecular marker for breeding programs of mutton production, as well as the circUSP13-miR-29c-IGF1 axis as a potential therapeutic target for combating muscle wasting.


Assuntos
Apoptose , Diferenciação Celular , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/metabolismo , Mioblastos/metabolismo , RNA Circular/metabolismo , Animais , Cabras
10.
Appl Microbiol Biotechnol ; 107(5-6): 1751-1764, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36800030

RESUMO

Lam16A is a novel GH16 ß-1,3-1,4-lichenase isolated from the genus Caldicellulosiruptor which can utilize untreated carbohydrate components of plant cell walls. Its catalytic module has been characterized that the six carbohydrate-binding modules (CBMs) were queued in the C-terminus, but their roles were still unclear. Here, full-length and CBM-truncated mutants of Lam16A were purified and characterized through heterologous expression in Escherichia coli. The profiles of these proteins, including the enzyme activity, degrading efficiency, substrate-binding affinity, and thermostability, were explored. Full-length Lam16A with six CBMs showed excellent thermostability and the highest activity against barley ß-glucan and laminarin with optimum pH of 6.5. The CBMs stimulated degrading ability of the catalytic module, especially against ß-1,3(4)-glucan-based polysaccharides. The released products from ß-1,3-1,4-glucan by Lam16A or its truncated mutants revealed an endo-type glycoside hydrolase. Lam16As exhibited strong binding affinities to the insoluble polysaccharides, especially Lam16A-1CBM. The degradation of yeast cell walls by Lam16A enzyme solution relative to the control reduced the absorbance values at OD800 by ~ 85% ± 1.2, enabling the release of up to ~ 0.057 ± 0.0039 µg/mL of the cytoplasmic protein into the supernatant, lowering the viability of the cells by ~ 70.3% ± 6.9, thus causing significant damage in the cell wall structure. Taken together, CBMs could influence the substrate specificity, thermal stability, and binding affinity of ß-1,3-1,4-glucanase. These results demonstrate the great potential of these enzymes to promote the bioavailability of ß-1,3-glucan oligosaccharides for health benefits. KEY POINTS: • Carbohydrate-binding modules strongly influenced the enzyme activity and binding affinity, and further impacted glycoside hydrolase activity. • Lam16A enzymes have sufficient ability to hydrolyze ß-1,3-1,4-glucan-based polysaccharides. • Lam16As provide a powerful tool to promote the bioavailability of ß-1,3-glucan oligosaccharides.


Assuntos
Polissacarídeos , beta-Glucanas , Polissacarídeos/metabolismo , beta-Glucanas/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Especificidade por Substrato
11.
Genomics ; 114(5): 110453, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36030023

RESUMO

DNA methylation has crucial roles in regulating the expression of genes involved in skeletal muscle development. However, the DNA methylation pattern of lncRNA during sheep skeletal muscle development remains unclear. This study investigated previous WGBS and LncRNA data in skeletal muscle of sheep (fetus and adult). We then focused on LncRNA GTL2, which is differentially expressed in skeletal muscle and has multiple DMRs. We found that the expression level of GTL2 decreased with age. GTL2 DMRs methylation levels were significantly higher in adult muscle than in fetal muscle. After 5AZA treatment, GTL2 expression was significantly increased in a dose-dependent manner.The dCas9-DNMT3A-sgRNA significantly reduced the expression level of GTL2 in cells, but increased GTL2 DMR methylation levels. The above studies indicate that dCas9-DNMT3A can effectively increase the methylation level in the DMR region of GTL2, the expression level of GTL2 is regulated by DNA methylation during muscle development.


Assuntos
Metilação de DNA , RNA Longo não Codificante , Animais , Impressão Genômica , Desenvolvimento Muscular/genética , Músculo Esquelético , RNA Longo não Codificante/genética , Ovinos/genética
12.
Genomics ; 114(6): 110511, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36283658

RESUMO

LncRNAs are regarded as regulators in various animal reproductive physiological processes. However, the regulation of lncRNAs in the reproductive organ development of Hu sheep with different prolificacy remains unknown. Herein, numerous tissue-unique and -common differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs), and fecundity-unique DELs and DEGs were identified among different comparison groups at horizontal and vertical levels. Moreover, the tissue-unique and -common, and fecundity-unique female reproduction-associated DEGs and DELs were screened, and the interaction networks were constructed. Furthermore, MSTRG.43442.1 was mainly present in the cytoplasm of tested cells. The key genes ADAMTS1 and DCN were mainly localized in the granulosa cells, pituitary cells and/or endometrial epithelial cells of ovary, pituitary and/or uterus. Overall, this study identified large numbers of unique and common DELs and DEGs in the female reproductive organs of Hu sheep with different prolificacy and provided new insights into understanding the regulation of Hu sheep fecundity.


Assuntos
RNA Mensageiro , Feminino , Ovinos/genética , Animais , RNA Mensageiro/genética
13.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445833

RESUMO

Pituitary gonadotropins perform essential functions in mammalian reproduction by stimulating gametogenesis and steroidogenesis in the ovaries and testicles. EZH2 is a histone methyltransferase that inhibits proliferation and aggravates apoptosis in stem cells subjected to pathological stimuli. However, the expression and molecular mechanisms of EZH2 in pituitary cells in vitro have not been extensively studied. In this study, the relative abundances of EZH2 mRNA (p < 0.01) and protein (p < 0.05) expression were larger in the pituitary cells of Hu sheep with relatively greater fecundity (GF) compared to those with lesser fecundity (LF). Loss-of-function examinations demonstrated that EZH2 gene knockdown led to an earlier induction of apoptosis in sheep pituitary cells (PCs). The relative abundance of CASP3, CASP9, and BAX was increased (p < 0.01), while BCL2's abundance was less decreased (p < 0.01) in PCs where there was EZH2 gene knockdown. Additionally, cell proliferation (p < 0.01) and viability (p < 0.01) were decreased in EZH2-knockdown sheep PCs, and the cell cycle was blocked compared to a negative control (NC). Notably, EZH2 gene knockdown led to reduced abundances of gonadotropin subunit gene transcripts (FSHß, p < 0.05) and reduced FSH release (p < 0.01) from PCs. EZH2 gene knockdown led to reduced phosphorylation of AKT, ERK, and mTOR (p < 0.01). The results suggest that EZH2 regulates pituitary cell proliferation, apoptosis, and FSH secretion through modulation of the AKT/ERK signaling pathway, providing a foundation for further study of pituitary cell functions.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Ovinos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Técnicas de Silenciamento de Genes , Transdução de Sinais/fisiologia , Subunidade beta do Hormônio Folículoestimulante/genética , Proliferação de Células/genética , Mamíferos/genética
14.
Insect Mol Biol ; 31(5): 551-567, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35445454

RESUMO

We previously observed an over-dominant silkworm heterosis of increased yield in a cross of Bombyx mori nuclear polyhydrosis virus-resistant strain NB with a susceptible strain 306. In the present study, we found that heterosis also exists in crosses of NB with other susceptible strains, indicating it is a more general phenomenon. We performed comparative transcriptome and proteome and identified 1624 differentially expressed genes (DEGs) and 298 differentially expressed proteins (DEPs) in silk glands between parents and F1 hybrids, of which 24 DEGs/DEPs showed consistent expression at mRNA and protein levels revealed by Venn joint analysis. Their expressions are completely non-additive, mainly transgressive and under low-parent, suggesting recombination of parental genomes may be the major genetic mechanism for the heterosis. GO and KEGG analyses revealed that they may function in generally similar but distinctive aspects of metabolisms and processes with signal transduction and translation being most affected. Notably, they may not only up-regulate biosynthesis and transport of silk proteins but also down-regulate other unrelated processes, synergistically and globally remodelling the silk gland to increase yield and cause the heterosis. Our findings contribute insights into the understanding of silkworm heterosis and silk gland development and provide targets for transgenic manipulation to further increase the silk yield.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Perfilação da Expressão Gênica , Vigor Híbrido , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Seda , Transcriptoma
15.
Exp Cell Res ; 401(2): 112524, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33651996

RESUMO

N6-Methyladenosine (m6A) modification is the most abundant chemical modification in mRNA, and it participates in various biological processes, such as cell differentiation and proliferation. However, little is known about the function of m6A demethylase fat mass and obesity-associated (FTO) in myoblast proliferation. Here, we demonstrated that knockdown of FTO can significantly inhibit myoblast proliferation and promote apoptosis. RNA sequencing analysis revealed that a lot of downregulated genes in FTO knockdown cells are associated with cell cycle and apoptosis. Furthermore, silencing FTO drastically decreased cyclin D1 (CCND1) expression through YTHDF2-mediated mRNA degradation, thereby delaying the progression of G1 phase, and leading to impaired myoblast proliferation. These findings unraveled that FTO regulates myoblast proliferation by controlling CCND1 expression in an m6A-YTHDF2-dependent manner, which highlights the critical roles of m6A modification in myoblast proliferation.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Ciclina D1/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Adenosina/análogos & derivados , Adenosina/genética , Apoptose/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Fase G1/genética , Humanos , Mioblastos/metabolismo
16.
Ecotoxicol Environ Saf ; 247: 114214, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327783

RESUMO

More and more discoveries have been made about the chronic toxic effects of aluminum, but the specific mechanism of action remains unclear. In this study, we explored the perturbation of aluminum on intestinal microflora and its effects on host and microbial metabolites through a more realistic nutrient absorption model. The microorganisms Turicibacter, Lactobacillus murinus, Lactobacillus_reuteri and Bifidobacterium pseudolongum may be the main targets of the aluminum affecting microbiota. Lysine, proline, putrescine, serotonin and cholesterol may be important metabolites affected by aluminum ions after the interference of intestinal flora composition, leading to abnormal metabolism pathways of amino acids and lipids in the body, and thus promoting inflammation and lesion. The possible mechanisms of aluminum action on the body: (1) Affecting immune cell response, ROS generation and production of a series of pro-inflammatory factors to promote inflammation; (2) Through the disturbance of intestinal microbiota composition structure, change the abundance of metabolites, and then affect amino acid metabolism, lipid metabolism pathways. The joint analysis of multiple omics showed significant difference in microbiome abundance and metabolomics expression between high dose group and the control group.


Assuntos
Alumínio , Metabolismo dos Lipídeos , Camundongos , Animais , Alumínio/toxicidade , Metabolômica , Inflamação/induzido quimicamente , Prolina
17.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296580

RESUMO

In this study, a sensitive capillary electrophoresis (CE) method based on molecularly imprinted solid-phase extraction (MISPE) was proposed to determine histamine in foods. A molecularly imprinted polymer (MIP) synthesized by bulk polymerization was used as the MISPE adsorbent for the selective extraction of histamine. Under the optimal conditions, the MISPE-CE method possessed good linearity for histamine detection in the concentration range of 0.1-100.0 µg/L. The limit of detection and limit of quantification of the method were calculated to be 0.087 µg/L and 0.29 µg/L, respectively. The histamine in spiked rice vinegar and liquor samples were detected by the developed method with recoveries of 92.63-111.00%. The histamine contents in fish, prawn, pork, chicken breast and soy sauce samples were determined using the developed method and a high-performance liquid chromatography method, with no significant difference found between the two methods.


Assuntos
Impressão Molecular , Animais , Impressão Molecular/métodos , Histamina , Polímeros Molecularmente Impressos , Ácido Acético , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese Capilar/métodos
18.
Reproduction ; 161(3): 255-267, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275121

RESUMO

Being a novel target of luteinizing hormone (LH), the effect of CREB-binding protein/P300-interacting trans-activator with ED-rich tail member 4 (CITED4) gene on the proliferation, apoptosis, and steroidogenesis of ovarian granulosa cells (GCs) in Hu sheep was investigated. The presence of CITED4, CREB-binding protein (CBP), CCAAT/enhancer-binding protein alpha (C/EBPα) and -beta (C/EBPß) proteins was demonstrated in GCs and luteal cells. CITED4 protein in GCs was induced by LH, and CITED4 overexpression moderately increased GC responses to LH. In contrast, CITED4 knockdown in GCs decreased prostaglandin (PGE2)-induced LH target gene levels. Moreover, PGE2-stimulated CITED4 mRNA expression was blocked by ERK1/2 inhibition (U0126), suggesting that CITED4 is a downstream target of the ERK1/2 pathway in sheep GCs. In contrast to CITED4 knockdown, CITED4 overexpression promoted GC proliferation, inhibited apoptosis, upregulated cell cycle-related genes, and downregulated apoptosis-related genes. Additionally, CITED4 overexpression induced cell cycle transition from S to G2/M phase. No effect was observed with CITED4 knockdown. CITED4 overexpression increased progesterone (P4) production levels and STAR mRNA expression, whereas CITED4 knockdown decreased P4 production and STAR and 3ß-HSD mRNA expression levels. Thus, our results suggest that CITED4 is involved in regulating the expression of LH-induced genes and the ERK1/2 pathway and the proliferation, apoptosis, and steroidogenesis in Hu sheep GCs by modulating the expression of related genes. These findings will help understand the role of CITED4 in follicular development and ovulation of pre-ovulatory follicles.


Assuntos
Células da Granulosa , Hormônio Luteinizante , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Feminino , Progesterona , Ovinos
19.
Adv Appl Microbiol ; 117: 1-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34742365

RESUMO

Carbon one industry flux gas generated from fossil fuels, various industrial and domestic waste, as well as lignocellulosic biomass provides an innovative raw material to lead the sustainable development. Through the chemical and biological processing, the gas mixture composed of CO, CO2, and H2, also termed as syngas, is converted to biofuels and high-value chemicals. Here, the syngas fermentation process is elaborated to provide an overview. Sources of syngas are summarized and the influences of impurities on biological fermentation are exhibited. Acetogens and carboxydotrophs are the two main clusters of syngas utilizing microorganisms, their essential characters are presented, especially the energy metabolic scheme with CO, CO2, and H2. Synthetic biology techniques and microcompartment regulation are further discussed and proposed to create a high-efficiency cell factory. Moreover, the influencing factors in fermentation and products in carboxylic acids, alcohols, and others such like polyhydroxyalkanoate and poly-3-hydroxybutyrate are addressed. Biological fermentation from carbon one industry flux gas is a promising alternative, the latest scientific advances are expatiated hoping to inspire more creative transformation.


Assuntos
Biocombustíveis , Ciclo do Carbono , Bactérias/genética , Carbono , Fermentação
20.
Pharmacol Res ; 163: 105275, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166736

RESUMO

BACKGROUND AND AIM: Studies differ with respect to the effects of statins and their on lipoprotein(a)[Lp(a)] levels. The aim of the present study was to resolve these differences by determining the effect of various types and dosages of statins on Lp(a) levels. METHODS: We searched PubMed, Embase and the Cochrane library for randomized controlled trials (RCTs) investigating the efficacy of statins on plasma Lp(a) levels. Study selection, data extraction and risk of bias assessment were conducted independently by four authors. We conducted pairwise meta-analysis and network meta-analysis (NMA). Consistency models were applied to NMA and the ranking probabilities for each treatment's efficacy were calculated. Node-splitting analysis was used to test inconsistency. This study was registered with PROSPERO, number CRD42020167612. RESULTS: Twenty RCTs with 23,605 participants were included, involving 11 interventions. Most of the included studies presented some risks of bias, especially risks of performance and detection bias. In the pairwise meta-analysis, pooled results showed a small but statistically significant difference between high-intensity rosuvastatin and placebo on Lp(a) levels (MD = 1.81, 95 % CI [0.43, 3.19], P = 0.01). In the NMA, different types and dosages of statins showed no significant effect on the level of Lp(a), and there was no obvious difference between them. Subgroup analysis based on different populations and treatment durations did not provide any statistically significant findings about different statins on Lp(a) levels. Node-splitting analysis showed that no significant inconsistency existed (P > 0.05). CONCLUSIONS: Statins have no clinically significant effect on Lp(a) levels, and there is no significant difference in the effect on Lp(a) levels between different types and dosages of statins. Moderate-intensity pitavastatin tended to have the best effect on reducing Lp(a) levels; nevertheless, it was insignificant. Our findings highlight the necessity for further study of the effect of statins on Lp(a) levels in future studies.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipoproteína(a)/sangue , Humanos , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa