Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(43): 14357-14366, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30346739

RESUMO

5,14-Diaryldiindeno[2,1- f:1',2' -j]picene (DDP, 1), a thermally and chemically stable helical arene, can be prepared from 1,4-bis[2-(arylethynyl)phenyl]benzene in four synthetic steps. Its helical backbone, which incorporates an o-quinodimethane moiety, was verified by X-ray crystallography, and this structural feature results in a very high barrier to racemization (exceeding 50 kcal/mol). DDP possesses versatile and promising properties, including a small HOMO-LUMO energy gap (1.31 eV for the dimesityl-substituted derivative 1ab), an electron spin resonance (ESR)-active character, a small triplet-singlet energy gap (4.75 kcal/mol), broad photoabsorption covering the ultraviolet, visible, and near-infrared (NIR) regions, two-photon absorption in the NIR range, and respectable ambipolar charge-transport behavior in a solution-processed organic field-effect transistor.

2.
Chem Asian J ; 19(4): e202300924, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38059903

RESUMO

The synthesis and characterization of a linear two-coordinate Cr(II) amido complex, Cr{N(t Bu)Dipp}2 (Dipp=2,6-diisopropylphenyl), from the reaction of 1 molar equivalent (equiv) of CrCl2 and 2 equiv. of LiN(t Bu)Dipp is reported. Single-crystal X-ray diffractometry (SC-XRD) analysis revealed that it has a short Cr-N bond distance of 1.8878(9) Å, which could be attributed to the relatively less bulky nature of the amido ligand compared with reported systems. Furthermore, the oxidation reaction of the two-coordinate Cr(II) complex was explored. The oxidation reaction of Cr{N(t Bu)Dipp}2 with the one-electron oxidants AgOTf and [FeCp2 ][BArF 4 ] (BArF 4 - =[B{C6 H3 -3,5-(CF3 )2 }4 ]- ) afforded the trigonal planar three- and bent two-coordinate Cr(III) complexes Cr{N(t Bu)Dipp}2 (OTf) and [Cr{N(t Bu)Dipp}2 ][BArF 4 ], respectively. The reaction of Cr{N(t Bu)Dipp}2 with 1 equiv. of the organic azides AdN3 (Ad=1-adamantyl) and PhN3 afforded the three-coordinate Cr(IV) imido complexes Cr{N(t Bu)Dipp}2 (NAd) and Cr{N(t Bu)Dipp}2 (NPh), respectively. The reaction of Cr{N(t Bu)Dipp}2 and two equiv. of Me3 NO afforded the Cr(VI) dioxo complex Cr{N(t Bu)Dipp}2 (O)2 . The reaction of Cr{N(t Bu)Dipp}2 with 1 equiv. of CyN=C=NCy resulted in the insertion of the carbodiimide into the Cr-N bond, with the formation of a three-coordinate Cr(II) complex. Finally, density functional theory (DFT) calculations were used to elucidate the electronic structure of these complexes.

3.
Chem Sci ; 13(33): 9637-9643, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091897

RESUMO

High-spin, late transition metal imido complexes have attracted significant interest due to their group transfer reactivity and catalytic C-H activation of organic substrates. Reaction of a new two-coordinate iron complex, Fe{N( t Bu)Dipp}2 (1, Dipp = 2,6-diisopropylphenyl), with mesitylazide (MesN3) afforded a three-coordinate Fe-imidyl complex, Fe{N( t Bu)Dipp}2([double bond, length as m-dash]NMes) (2). X-ray crystallographic characterization of single crystals of 2 showed a long Fe-N distance of 1.761(1) Å. Combined magnetic and spectroscopic (Mössbauer and X-ray absorption near edge structure spectroscopy, XANES) characterization of 2 suggests that it has an S = 2 ground state comprising an S = 5/2 Fe(iii) center antiferromagnetically coupled to an S = 1/2 imidyl ligand. Reaction of 1 and 1-azidoadamantane (AdN3) generated a putative, transient Fe{N( t Bu)Dipp}2([double bond, length as m-dash]NAd) (3') complex that yielded an intramolecular C-H amination product, Fe{N( t Bu)Dipp}{κ2-N,N'-_N(CMe2CH2̲NHAd)Dipp} (3). Quantum mechanical calculations further confirmed the spectroscopic assignment of 2 and 3', as well as the differences in their stability and reactivity. Importantly, imidyl radical delocalization onto the mesityl ring significantly increased the stability of 2 and reduced its reactivity toward potential hydrogen atom transfer (HAT) reagents. In contrast, quantum mechanical calculations of 3' revealed that the radical was solely localized on the imidyl N, leading to a high reactivity toward the proximal C-H bond of the N( t Bu)Dipp- ligand.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa