Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2312254, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874100

RESUMO

Nanoimprinting large-area structures, especially high-density features like meta lenses, poses challenges in achieving defect-free nanopatterns. Conventional high-resolution molds for nanoimprinting are often expensive, typically constructed from inorganic materials such as silicon, nickel (Ni), or quartz. Unfortunately, replicated nanostructures frequently suffer from breakage or a lack of definition during demolding due to the high adhesion and friction at the polymer-mold interface. Moreover, mold degradation after a limited number of imprinting cycles, attributed to contamination and damaged features, is a common issue. In this study, a disruptive approach is presented to address these challenges by successfully developing an anti-sticking nanocomposite mold. This nanocomposite mold is created through the co-deposition of nickel atoms and low surface tension polytetrafluoroethylene (PTFE) nanoparticles via electroforming. The incorporation of PTFE enhances the ease of polymer release from the mold. The resulting Ni-PTFE nanocomposite mold exhibits exceptional lubrication properties and a significantly reduced surface energy. This robust nanocomposite mold proves effective in imprinting fine, densely packed nanostructures down to 100 nm using thermal nanoimprinting for at least 20 cycles. Additionally, UV nanoimprint lithography (UV-NIL) is successfully performed with this nanocomposite mold. This work introduces a novel and cost-effective approach to reusable high-resolution molds, ensuring defect-reduction production in nanoimprinting.

2.
Small ; 19(6): e2205680, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470663

RESUMO

Nanopore brings extraordinary properties for a variety of potential applications in various industrial sectors. Since manufacturing of solid-state nanopore is first reported in 2001, solid-state nanopore has become a hot topic in the recent years. An increasing number of manufacturing methods have been reported, with continuously decreased sizes from hundreds of nanometers at the beginning to ≈1 nm until recently. To enable more robust, sensitive, and reliable devices required by the industry, researchers have started to explore the possible methods to manufacture nanopore array which presents unprecedented challenges on the fabrication efficiency, accuracy and repeatability, applicable materials, and cost. As a result, the exploration of fabrication of nanopore array is still in the fledging period with various bottlenecks. In this article, a wide range of methods of manufacturing nanopores are summarized along with their achievable morphologies, sizes, inner structures for characterizing the main features, based on which the manufacturing of nanopore array is further addressed. To give a more specific idea on the potential applications of nanopore array, some representative practices are introduced such as DNA/RNA sequencing, energy conversion and storage, water desalination, nanosensors, nanoreactors, and dialysis.

3.
Opt Express ; 31(8): 12097-12113, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157376

RESUMO

Many myopia control methods based on the peripheral defocus theory have emerged towards applications in recent years. However, peripheral aberration is a critical issue, which is still not well-addressed. To validate the aberrometer for peripheral aberration measurement, a dynamic opto-mechanical eye model with a wide visual field is developed in this study. This model consists of a plano-convex lens representing cornea (f' = 30 mm), a double-convex lens representing crystalline lens (f' = 100 mm), and a spherical retinal screen with a radius of 12 mm. To optimize the quality of spot-field images from the Hartman-Shack sensor, the materials and surface topography for the retina are studied. The model has an adjustable retina to achieve Zernike 4th item (Z4 focus) ranging from -6.28 µm to +6.84 µm. As for mean sphere equivalent, it can achieve -10.52 D to +9.16 D at 0° visual field and -6.97 D to +5.88 D at 30° visual field with a pupil size of 3 mm. To realize a changing pupil size, a slot at the back of the cornea mount and a series of thin metal sheets with 2, 3, 4, and 6 mm holes are generated. Both on-axis aberrations and peripheral aberrations of the eye model are verified by a well-used aberrometer and the eye model to mimic a human eye in a peripheral aberration measurement system is illustrated.


Assuntos
Cristalino , Miopia , Humanos , Refração Ocular , Córnea , Campos Visuais
4.
Opt Express ; 31(18): 28830-28849, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710694

RESUMO

A new thin plane mirror with an Archimedes spiral structure (Archimedes-structure thin plane mirror - ATPM) that implements an elastic support boundary is proposed in this study. An optimal structure of ATPM is developed to achieve a linear displacement response with respect to optical forces. The displacement response of the optimized ATPM is analyzed by considering the combined effects of optical force and gravity. The distribution of the optical force density is calculated based on a tilted Gaussian laser beam. Experimental results demonstrate that the optimized ATPM can produce a steady-state displacement of 24.18 nm on average in a normal-gravity environment when subjected to an average optical force of 132.17 nN. When the optical force exceeds 133 nN, the nonlinearity of the displacement response of the optimized ATPM is less than 6.28%. An amplification of the optical force-induced displacement is achieved by more than 15 times compared with that for an unstructured mirror of the same size. The results of this study can assist the development of a miniaturized macroscale optical force platform based on an ATPM for practical applications including the in-situ laser power measurement and nN level force source in the atomic and close-to-atomic scale manufacturing.

5.
Opt Express ; 31(10): 15438-15448, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157645

RESUMO

This paper presents an experimental study on the laser-induced atomic and close-to-atomic scale (ACS) structure of 4H-SiC using a capillary-discharged extreme ultraviolet (EUV) pulse of 46.9 nm wavelength. The modification mechanism at the ACS is investigated through molecular dynamics (MD) simulations. The irradiated surface is measured via scanning electron microscopy and atomic force microscopy. The possible changes in the crystalline structure are investigated using Raman spectroscopy and scanning transmission electron microscopy. The results show that the stripe-like structure is formed due to the uneven energy distribution of a beam. The laser-induced periodic surface structure at the ACS is first presented. The detected periodic surface structures with a peak-to-peak height of only 0.4 nm show periods of 190, 380, and 760 nm, which are approximately 4, 8, and 16 times the wavelength. In addition, no lattice damage is detected in the laser-affected zone. The study shows that the EUV pulse is a potential approach for the ACS manufacturing of semiconductors.

6.
Langmuir ; 39(30): 10432-10444, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37460243

RESUMO

Adhesion property measurements contribute to a comprehensive understanding of the mechanical properties of soft matters. Indentation tests are a common method for measuring the adhesion force. However, indenters generally have a large volume and a small sensing angle and, thus, are not conducive to local detection in high-precision environments. Here, we propose a vision-based contact adhesion measurement (VisCAM) method to achieve the contact image and adhesion force on soft matter surfaces from the perspective of indentation direction. The coupling of the 7.6 mm diameter probe and a flexible fiber makes the system similar to a miniaturized endoscope. Classical contact theories and finite element models are used for the contact mechanics analysis of silicone rubber. The image grayscale-load mathematical model is constructed based on the change in contact light spot. Finally, the uncertainty of the system is less than 4%, and the measurement error is 0.04 N. In-vitro kidney indentation experiments showed that the local adhesion force measurement of soft tissues can be completed. Our method provides better solutions for understanding the adhesion properties of soft matters.

7.
Phys Chem Chem Phys ; 25(31): 20871-20879, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522855

RESUMO

Due to the remarkable resistance of SiCl against photo-induced desorption, achieving atomic layer etching (ALE) of Cl-Si(100) through a laser-based method has remained a formidable challenge. In this study, we investigate the interaction between ultrashort laser pulses and the Cl-Si(100) surface via ab initio simulations that combine real-time time-dependent density functional theory and molecular dynamics. Our results demonstrate the direct desorption of the stubborn SiCl layer through the application of appropriate femtosecond laser pulses. Notably, the desorption process is enhanced by pulses with higher laser intensity, shorter wavelength, and longer pulse duration. There is a threshold intensity beyond which the SiCl can be directly desorbed under laser pulses with a wavelength of 488 nm and a pulse duration of 40 ℏ eV-1 (26.3 fs). Analysis of electron localization function reveals a critical bond breaking length of 2.98 Šbetween Si-Si, connecting SiCl to the bulk material. The time evolution of bond lengths and forces reveals that the desorption of SiCl is primarily driven by repulsive forces generated within the Si-Si bond. Furthermore, electron density difference analysis and Keldysh factor calculations indicate that these repulsive forces arise from multiphoton ionization. This study provides crucial atomic-level insights into the interaction of ultrashort laser pulses with Cl-Si(100), thereby propelling the advancement of laser-induced atomic layer etching techniques.

8.
J Chem Phys ; 158(10): 104702, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922148

RESUMO

Pulsed lasers are a powerful tool for fabricating silicon carbide (SiC) that has a hard and brittle nature, but oxidation is usually unavoidable. This study presents an exploration of the oxidation mechanism of 4H-SiC in oxygen and water under different temperatures via reactive force field molecular dynamics. Single pulse irradiation experiments were conducted to study the oxygen content of the laser-affected zone through energy dispersive x-ray spectrometry. The results show that laser-induced thermal oxidation is a complex dynamic process with the interactions among H, C, O, and Si atoms. The oxidation zone includes an oxide layer, a graphite layer, and a C-rich layer. With an increase in oxygen concentration, the amorphous oxide layer changes from silicon oxide to silicon dioxide. In addition, the formation of carbon clusters at the interface between SiOx and C-rich layers promotes the desorption of the oxide layer. The mechanism revealed in this study provides theoretical guidance for high-quality processing of 4H-SiC at atomic and close-to-atomic scales.

9.
J Vis ; 23(11): 82, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733496

RESUMO

Many myopia control products based on the peripheral defocus theory have emerged on the market in the past five years. However, efficient measurement of peripheral aberrations is still not a well-addressed problem. To validate the aberrometer for peripheral aberration measurement, a dynamic wide field optomechanical eye model is designed and fabricated. This model consists of a plano-convex lens representing cornea (f'=30mm), a double-convex lens representing crystalline lens (f'=100mm), and a spherical retinal screen with a 12mm radius. To optimize the quality of spot-field images get from the Hartman-Shack sensor, the materials and surface treatment for the retina are studied. The model has a movable retina to achieve Zernike 4th item (Z4 focus) ranging from -6.28-+6.84 µm. As for M (Mean sphere equivalent), it can achieve -11.85D-+10.88D at 0° visual field and -6.97D-+5.88D at 30° visual field with a 4mm pupil size. To allow a changing pupil size, a slot at the back of the cornea mount and a series of thin metal sheets with 2, 3, 4, and 6 mm holes are manufactured. Both on-axis aberrations and peripheral aberrations of the eye model are verified by commercial aberrometer VX130 (Luneau Technology, France) and the feasibility of the eye model to mimic a human eye in a peripheral aberration measuring system is illustrated.


Assuntos
Cristalino , Miopia , Humanos , Córnea , Refração Ocular , Retina/diagnóstico por imagem
10.
Sensors (Basel) ; 23(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571595

RESUMO

Visual measurement methods are extensively used in various fields, such as aerospace, biomedicine, agricultural production, and social life, owing to their advantages of high speed, high accuracy, and non-contact. However, traditional camera-based measurement systems, relying on the pinhole imaging model, face challenges in achieving three-dimensional measurements using a single camera by one shot. Moreover, traditional visual systems struggle to meet the requirements of high precision, efficiency, and compact size simultaneously. With the development of light field theory, the light field camera has garnered significant attention as a novel measurement method. Due to its special structure, the light field camera enables high-precision three-dimensional measurements with a single camera through only one shot. This paper presents a comprehensive overview of light field camera measurement technologies, including the imaging principles, calibration methods, reconstruction algorithms, and measurement applications. Additionally, we explored future research directions and the potential application prospects of the light field camera.

11.
Opt Express ; 30(22): 40413-40424, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298975

RESUMO

Manufacturing-induced sidewall roughness has a significant impact on the diffraction efficiency of extreme ultraviolet (EUV) gratings and masks, which could be evaluated by a Debye-Waller damping factor. The rough profile models of line structures are always parallel to the surface for the reflective elements. In this manuscript, a model of rough lines along the thickness direction is established, which cannot be ignored for high aspect ratio transmission gratings. Numerical calculations are carried out using both a rigorous model and a Fraunhofer approximation model. The two models agree with each other on the low-order transmission efficiencies, and the fitted Debye-Waller factor indicates a larger roughness value than that of the model due to the absorption of EUV irradiation for 90° sidewall angle. When the sidewall angle is smaller than 88°, an extra degree of freedom is introduced to the traditional Debye-Waller factor-based formula. The +1-order transmission efficiency and absorptivity with smooth and rough sidewalls are also analyzed, as well as the effect of incidence angle, wavelength and grating thickness.

12.
Opt Express ; 30(15): 26251-26265, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236820

RESUMO

Optical performance evaluation is a critical process in the production of collimating lenses. However, the current visual inspection of lens light-spot images is inefficient and prone to fatigue. Intelligent detection based on machine vision and deep learning can improve evaluation efficiency and accuracy. In this study, a dual-branch structure light-spot evaluation model based on deep learning is proposed for collimating lens optical performance evaluation, and a lens light-spot image dataset is built, containing 9000 images with corresponding labels. Experimental results show that the proposed model achieves accurate classification of lens optical performance evaluation. Combined with the proposed weighted multi-model voting strategy, the performance of the model is further improved, and the classification accuracy successfully reaches 98.89%. Through the developed application software, the proposed model can be well applied to the quality inspection in collimating lens production.

13.
Nanotechnology ; 33(12)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875640

RESUMO

Molecular dynamics simulation is adopted to discover the formation mechanism of silicon vacancy color center and to study the damage evolution in 4H-SiC during helium ion implantation with different annealing temperatures. The number and distribution of silicon vacancy color centers during He ion implantation can be more accurately simulated by introducing the ionization energy loss during implantation. A new method for numerical statistic of silicon vacancy color centers is proposed, which takes into account the structure around the color centers and makes statistical results more accurate than the Wigner-Seitz defect analysis method. Meanwhile, the photoluminescence spectra of silicon vacancy color centers at different helium ion doses are characterized to verify the correctness of the numerical analysis. The new silicon vacancy color center identification method can help predicting the optimal annealing temperature for silicon vacancy color centers, and provide guidance for subsequent color center annealing experiments.

14.
Sensors (Basel) ; 21(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535480

RESUMO

Phase compensation is a critical step for the optical measuring system using spatial light modulator (SLM). The wavefront distortion from SLM is mainly caused by the phase modulation non-linearity and non-uniformity of SLM's physical structure and environmental conditions. A phase modulation characteristic calibration and compensation method for liquid crystal on silicon spatial light modulator (LCoS-SLM) with a Twyman-Green interferometer is illustrated in this study. A method using two sequences of phase maps is proposed to calibrate the non-uniformity character over the whole aperture of LCoS-SLM at pixel level. A phase compensation matrix is calculated to correct the actual phase modulation of the LCoS-SLM and ensure that the designed wavefront could be achieved. Compared with previously known compensation methods, the proposed method could obtain the phase modulation characteristic curve of each pixel on the LCoS-SLM, rather than a mono look-up table (LUT) curve or multi-LUT curves corresponding to an array of blocks over the whole aperture of the LCoS-SLM. The experiment results show that the phase compensation precision could reach a peak-valley value of 0.061λ in wavefront and this method can be applied in generating freeform wave front for precise optical performance.

15.
Opt Express ; 28(18): 27155-27180, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906973

RESUMO

Understanding the age-dependent properties of the crystalline lenses of children is fundamental in studying the mechanism of myopic development and progression. A more realistic lens structure has more power for predicting the optical properties of the crystalline lenses. In this manuscript, a new lens model is proposed to predict the age-dependent change in the crystalline lens for children aged 6 to 15 years old. The lens model has the capability of involving most parameters measurable on the in vivo human lens. Moreover, the discrepancy of refractive indices at the equatorial edge and anterior and posterior vertices of the external lens surface is explained systematically. The analysis shows that this discrepancy has a significant role on the optical performance of the lens. The age-dependent properties are modelled based on available experimental data. The relationship between structural and optical performance is investigated with three-dimensional ray-tracing. The contributions of each parameter to the optical power and spherical aberration are revealed. The study has highlighted the importance of building physiology-like crystalline lens structure since some parameters ignored by previous studies can have a great optical impact.


Assuntos
Envelhecimento/fisiologia , Cristalino/fisiologia , Modelos Teóricos , Refração Ocular/fisiologia , Adolescente , Criança , Humanos , Matemática
16.
Opt Express ; 28(25): 38252-38266, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379641

RESUMO

Slow tool servo diamond turning has widespread application in fabricating freeform optics. Previous studies are focused on the methods of the tool path generation and verification of zero-rake-angle tools. However, these methods are unsuitable for non-zero-rake tools that are used for machining hard-and-brittle materials. This paper presents a universal location-point-drive tool path generation method, which caters to arbitrary rake angle tools and the steady X movement feature, and the corresponding universal tool interference check method. Systematic analysis and ultra-precision machining experiments confirmed the feasibility of our methods and present better surface quality and form accuracy compared to the traditional method.

17.
Appl Opt ; 59(1): 234-243, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225300

RESUMO

During quality-assurance procedures in the mass production of small-sized curved optical lenses, fine defects are usually detected via manual observation, which is not recommended owing to the associated drawbacks of high error rate, low efficiency, and nonamenability to quantitative analysis. To address this concern, this paper presents a comprehensive defect-detection system based on transmitted fringe deflectometry, dark-field illumination, and light transmission. Experimental results obtained in this study reveal that the proposed method demonstrates efficient and accurate detection of several microdefects occurring in small-sized optical lenses, thereby providing valuable insights into the optimization of parameters concerning the mass production of optical lenses. The proposed system can be applied to the actual mass production of small-sized curved optical lenses.

18.
Sensors (Basel) ; 20(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752014

RESUMO

Biometric measurement of the anterior segment is of great importance for the ophthalmology, human eye modeling, contact lens fitting, intraocular lens design, etc. This paper serves as a comprehensive review on the historical development and basic principles of the technologies for measuring the geometric profiles of the anterior segment. Both the advantages and drawbacks of the current technologies are illustrated. For in vivo measurement of the anterior segment, there are two main challenges that need to be addressed to achieve high speed, fine resolution, and large range imaging. One is the motion artefacts caused by the inevitable and random human eye movement. The other is the serious multiple scattering effects in intraocular turbid media. The future research perspectives are also outlined in this paper.


Assuntos
Biometria , Segmento Anterior do Olho/diagnóstico por imagem , Humanos , Tomografia de Coerência Óptica
19.
Opt Express ; 27(8): 10873-10889, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052941

RESUMO

A novel approach named off-spindle-axis (OSA) spiral grinding for fabricating aspheric microlens array (AMLA) mold inserts for precision glass molding (PGM) is presented. In OSA spiral grinding, three translational motions of the grinding wheel are synchronized with the rotation of the workpiece to form a local spiral wheel path for individual lens-lets. With this approach, the form accuracy of lens-lets can be compensated within sub-micrometer by means of the on-machine measurement. The determination of wheel path and form error compensation via on-machine measurement are systematically studied. A tungsten carbide mold insert with four convex aspheric lens-lets is fabricated to evaluate the grinding performance. PGM experiments are performed to produce glass AMLA using the ground insert. The experimental results indicate that both the ground and molded AMLA with homogeneous quality are achieved. The form accuracy and surface roughness of both the mold insert and the molded AMLA were less than 0.3 µm in PV and 10 nm in Sa, respectively.

20.
Opt Express ; 27(4): 5033-5047, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876109

RESUMO

Precision glass molding technology is one of the most important approaches to produce optical glass lenses. However, the high fidelity and repeatability of optical performance be sometimes achieved even though the lenses meet the requirements of geometric assessments. The surface errorform errors transferred from mold surface with a complicated combination of components of different spatial-frequencies greatly influence the optical lenses performance. An optical model is built to investigate the impact of form errors with various frequencies on the optical performance of the lens. The mid-spatial frequency error is proved to be the factor that results in the most serious surrounding circle phenomenon. Based on the diffraction theory of the sinusoidal grating, numerical calculation is carried out to analyze their relationship. Experiments are conducted to validate the analysis and a mold polishing procedure is provided as a method to improve the quality of lenses according to performance evaluation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa