Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(22): 7425-36, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24872548

RESUMO

The radial migration of newborn neurons is critical for the lamination of the cerebral cortex. Proper neuronal migration requires precise and rapid reorganization of the actin and microtubule cytoskeleton. However, the underlying signaling mechanisms controlling cytoskeletal reorganization are not well understood. Here, we show that Mst3, a serine/threonine kinase highly expressed in the developing mouse brain, is essential for radial neuronal migration and final neuronal positioning in the developing mouse neocortex. Mst3 silencing by in utero electroporation perturbed the multipolar-to-bipolar transition of migrating neurons and significantly retards radial migration. Although the kinase activity of Mst3 is essential for its functions in neuronal morphogenesis and migration, it is regulated via its phosphorylation at Ser79 by a serine/threonine kinase, cyclin-dependent kinase 5 (Cdk5). Our results show that Mst3 regulates neuronal migration through modulating the activity of RhoA, a Rho-GTPase critical for actin cytoskeletal reorganization. Mst3 phosphorylates RhoA at Ser26, thereby negatively regulating the GTPase activity of RhoA. Importantly, RhoA knockdown successfully rescues neuronal migration defect in Mst3-knockdown cortices. Our findings collectively suggest that Cdk5-Mst3 signaling regulates neuronal migration via RhoA-dependent actin dynamics.


Assuntos
Movimento Celular/fisiologia , Quinase 5 Dependente de Ciclina/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Ativação Enzimática/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Dados de Sequência Molecular , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Ratos , Proteína rhoA de Ligação ao GTP
2.
J Neurosci ; 31(38): 13613-24, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21940452

RESUMO

Axon formation is critical for the establishment of connections between neurons, which is a prerequisite for the development of neural circuitry. Kinases such as cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase-3ß (GSK-3ß), have been implicated to regulate axon outgrowth. Nonetheless, the in vivo roles of these kinases in axon development and the underlying signaling mechanisms remain essentially unknown. We report here that Cdk5 is important for axon formation in mouse cerebral cortex through regulating the functions of axis inhibitor (Axin), a scaffold protein of the canonical Wnt pathway. Knockdown of Axin in utero abolishes the formation and projection of axons. Importantly, Axin is phosphorylated by Cdk5, and this phosphorylation facilitates the interaction of Axin with GSK-3ß, resulting in inhibition of GSK-3ß activity and dephosphorylation of its substrate collapsin response mediator protein-2 (CRMP-2), a microtubule-associated protein. Specifically, both phosphorylation of Axin and its interaction with GSK-3ß are critically required for axon formation in mouse cortex development. Together, our findings reveal a new regulatory mechanism of axon formation through Cdk5-dependent phosphorylation of Axin.


Assuntos
Proteína Axina/fisiologia , Axônios/fisiologia , Córtex Cerebral/fisiologia , Quinase 5 Dependente de Ciclina/fisiologia , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Axônios/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Técnicas de Silenciamento de Genes/métodos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Sci Rep ; 9(1): 1190, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718786

RESUMO

Major depressive disorders are emerging health problems that affect millions of people worldwide. However, treatment options and targets for drug development are limited. Impaired adult hippocampal neurogenesis is emerging as a key contributor to the pathology of major depressive disorders. We previously demonstrated that increasing the expression of the multifunctional scaffold protein Axis inhibition protein (Axin) by administration of the small molecule XAV939 enhances embryonic neurogenesis and affects social interaction behaviors. This prompted us to examine whether increasing Axin protein level can enhance adult hippocampal neurogenesis and thus contribute to mood regulation. Here, we report that stabilizing Axin increases adult hippocampal neurogenesis and exerts an antidepressant effect. Specifically, treating adult mice with XAV939 increased the amplification of adult neural progenitor cells and neuron production in the hippocampus under both normal and chronic stress conditions. Furthermore, XAV939 injection in mice ameliorated depression-like behaviors induced by chronic restraint stress. Thus, our study demonstrates that Axin/XAV939 plays an important role in adult hippocampal neurogenesis and provides a potential therapeutic approach for mood-related disorders.


Assuntos
Proteína Axina/metabolismo , Depressão/metabolismo , Neurogênese/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Proteína Axina/genética , Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Depressão/patologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Estresse Psicológico
4.
Cell Rep ; 21(2): 381-392, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020625

RESUMO

Brains vary greatly in neuronal number and density, even across individuals within the same species, yet it remains unclear whether such variation leads to differences in brain function or behavior. By imaging cortical activity of a mouse model in which neuronal production is moderately enhanced in utero, we find that animals with more cortical neurons also develop enhanced functional correlations and more distinct neuronal ensembles in primary visual cortex. These mice also have sharper orientation discrimination in their visual behavior. These results unveil a correlation between neuronal ensembles and behavior and suggest that neuronal number is linked to functional modularity and perceptual discrimination of visual cortex. By experimentally linking differences in neuronal number and behavior, our findings could help explain how evolutionary and developmental variability of individual and species brain size may lead to perceptual and cognitive differences.


Assuntos
Discriminação Psicológica , Neurônios/fisiologia , Acuidade Visual , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Neurônios/citologia , Córtex Visual/citologia
5.
DNA Seq ; 17(4): 282-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17312947

RESUMO

Pre-mRNA splicing allows individual genes to produce multiple protein isoforms with diverse functions. Recognition of functional splice sites in pre-mRNAs is very important in this splicing process and requires some protein auxiliary factors such as U2 small nuclear ribonucleoprotein auxiliary factor small subunit (U2AF35, encoded by U2AF1). By its RNA binding domains, U2AF35 interacts with U2AF65 to bind 3' splice site of pre-mRNA and initiates splicing. Another protein, which is named as U2AF1-like3 (U2AF1L3), shows high similarity with U2AF35 and may have related function in pre-mRNA splicing. Here, we report a splice variant of U2AF1L3, which is 767 bp in length and has an open reading frame (ORF) coding a predicted 181 amino acids protein. Reverse transcription-PCR (RT-PCR) shows that this isoform has different expression pattern with U2AF1L3 and is highly expressed in heart, brain and lung.


Assuntos
Processamento Alternativo/genética , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Biologia Computacional , Primers do DNA , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Sítios de Splice de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Fator de Processamento U2AF
6.
PLoS One ; 10(7): e0133115, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26204446

RESUMO

During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin ("axis inhibitor") is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein-protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization.


Assuntos
Proteína Axina/fisiologia , Espinhas Dendríticas/ultraestrutura , Transdução de Sinais/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Animais , Proteína Axina/genética , Região CA1 Hipocampal/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Celular/química , Células Cultivadas , Citosol/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Camundongos , Morfogênese , Neurogênese , Densidade Pós-Sináptica/química , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Sinaptossomos/metabolismo
7.
DNA Seq ; 15(3): 213-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15497446

RESUMO

Bardet-Biedl syndrome (BBS) is a heterogeneous multisystemic disorder characterized primarily by five cardinal features of retinal degeneration, obesity, polydactyly, hypogenitalism and mental retardation. To date, six distinct BBS loci that have been identified on different chromosomes. BBS4 gene is mapped to 15q22.2-23, which when mutated can cause BBS4. Its protein shows strong homology to O-linked N-acetylglucosamine (O-GlcNAc) transferase. Here we report a splice variant of BBS4, which is 2556 bp in length and has an open reading frame coding a predicted 527 amino-acids protein. RT-PCR shows that the cDNA is widely expressed while it has higher expression levels in pancreas, liver and prostate.


Assuntos
Processamento Alternativo/genética , Cromossomos Humanos Par 15/genética , Proteínas/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Componentes do Gene , Humanos , Fígado/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Pâncreas/metabolismo , Próstata/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Cell Rep ; 9(5): 1635-1643, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25466248

RESUMO

The functional integrity of the neocortex depends upon proper numbers of excitatory and inhibitory neurons; however, the consequences of dysregulated neuronal production during the development of the neocortex are unclear. As excess cortical neurons are linked to the neurodevelopmental disorder autism, we investigated whether the overproduction of neurons leads to neocortical malformation and malfunction in mice. We experimentally increased the number of pyramidal neurons in the upper neocortical layers by using the small molecule XAV939 to expand the intermediate progenitor population. The resultant overpopulation of neurons perturbs development of dendrites and spines of excitatory neurons and alters the laminar distribution of interneurons. Furthermore, these phenotypic changes are accompanied by dysregulated excitatory and inhibitory synaptic connection and balance. Importantly, these mice exhibit behavioral abnormalities resembling those of human autism. Thus, our findings collectively suggest a causal relationship between neuronal overproduction and autism-like features, providing developmental insights into the etiology of autism.


Assuntos
Transtorno Autístico/patologia , Interneurônios/fisiologia , Neocórtex/patologia , Animais , Transtorno Autístico/etiologia , Proliferação de Células , Espinhas Dendríticas/fisiologia , Masculino , Camundongos , Sinapses/fisiologia
9.
Neuron ; 79(4): 665-79, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23972596

RESUMO

The expansion of the mammalian cerebral cortex is safeguarded by a concerted balance between amplification and neuronal differentiation of intermediate progenitors (IPs). Nonetheless, the molecular controls governing these processes remain unclear. We found that the scaffold protein Axin is a critical regulator that determines the IP population size and ultimately the number of neurons during neurogenesis in the developing cerebral cortex. The increase of the IP pool is mediated by the interaction between Axin and GSK-3 in the cytoplasmic compartments of the progenitors. Importantly, as development proceeds, Axin becomes enriched in the nucleus to trigger neuronal differentiation via ß-catenin activation. The nuclear localization of Axin and hence the switch of IPs from proliferative to differentiative status are strictly controlled by the Cdk5-dependent phosphorylation of Axin at Thr485. Our results demonstrate an important Axin-dependent regulatory mechanism in neurogenesis, providing potential insights into the evolutionary expansion of the cerebral cortex.


Assuntos
Proteína Axina/metabolismo , Diferenciação Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Células-Tronco Neurais/fisiologia , Neurogênese , Animais , Proteína Axina/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Eletroporação , Embrião de Mamíferos , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Imunoprecipitação , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos ICR , Fosforilação , Gravidez , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Treonina/metabolismo , Transfecção , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa