Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 24(9): 9617-28, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137575

RESUMO

We propose that a gain-switched laser diode (GS-LD) can be used as a picosecond laser source for stimulated Raman scattering (SRS) microscopy. We employed a 1.06-µm GS-LD to generate ~13-ps pulses at a repetition rate of 38 MHz and amplified them to >100 mW with Yb-doped fiber amplifiers. The GS-LD was driven by 200-ps electrical pulses, which were triggered through a toggle flip-flop (T-FF) so that the GS-LD pulses were synchronized to Ti:sapphire laser (TSL) pulses at a repetition rate of 76 MHz. We found the timing jitter of GS-LD pulses to be approximately 2.7 ps in a jitter bandwidth of 7 MHz. We also show that the delay of electrical pulses can be less sensitive to the optical power of TSL pulses by controlling the threshold voltage of the T-FF. We demonstrate the SRS imaging of polymer beads and of HeLa cells with GS-LD pulses and TSL pulses, proving that GS-LD is readily applicable to SRS microscopy as a compact and stable pulse source.

2.
Opt Lett ; 41(17): 4028-31, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27607964

RESUMO

We have generated optical pulses of 1.2 MW peak power and 0.6 ps duration using a 1060 nm band gain-switched laser diode pulse oscillator. Optical pulses are amplified by three-stage ytterbium-doped fiber amplifiers, and remarkable reductions of amplified spontaneous emission noise and temporal duration have been accomplished based on self-phase modulation in the middle-stage amplifier. After the main amplifier, optical pulses were temporally compressed by a grating pair, and this enabled generation of subpicosecond optical pulses with over 1 MW peak power.

3.
Biomed Opt Express ; 9(6): 2671-2680, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258682

RESUMO

We developed a compact stimulated emission depletion (STED) two-photon excitation microscopy that utilized electrically controllable components. Transmissive liquid crystal devices inserted directly in front of the objective lens converted the STED light into an optical vortex while leaving the excitation light unaffected. Light pulses of two different colors, 1.06 and 0.64 µm, were generated by laser diode-based light sources, and the delay between the two pulses was flexibly controlled so as to maximize the fluorescence suppression ratio. In our experiments, the spatial resolution of this system was up to three times higher than that obtained without STED light irradiation, and we successfully visualize the fine microtubule network structures in fixed mammalian cells without causing significant photo-damage.

4.
Biomed Opt Express ; 6(3): 891-901, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25798313

RESUMO

In vivo two-photon microscopy is an advantageous technique for observing the mouse brain at high resolution. In this study, we developed a two-photon microscopy method that uses a 1064-nm gain-switched laser diode-based light source with average power above 4 W, pulse width of 7.5-picosecond, repetition rate of 10-MHz, and a high-sensitivity photomultiplier tube. Using this newly developed two-photon microscope for in vivo imaging, we were able to successfully image hippocampal neurons in the dentate gyrus and obtain panoramic views of CA1 pyramidal neurons and cerebral cortex, regardless of age of the mouse. Fine dendrites in hippocampal CA1 could be imaged with a high peak-signal-to-background ratio that could not be achieved by titanium sapphire laser excitation. Finally, our system achieved multicolor imaging with neurons and blood vessels in the hippocampal region in vivo. These results indicate that our two-photon microscopy system is suitable for investigations of various neural functions, including the morphological changes undergone by neurons during physiological phenomena.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa