Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Circ Res ; 135(1): 93-109, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770649

RESUMO

BACKGROUND: Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS: PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS: We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS: Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.


Assuntos
Histona-Lisina N-Metiltransferase , Hipertensão Pulmonar , Hipóxia , Mitofagia , Músculo Liso Vascular , Miócitos de Músculo Liso , PPAR gama , Artéria Pulmonar , Ratos Sprague-Dawley , Animais , Humanos , Masculino , Camundongos , Ratos , Proliferação de Células , Células Cultivadas , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/genética , Hipóxia/complicações , Hipóxia/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Remodelação Vascular
2.
J Mol Cell Cardiol ; 186: 57-70, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984156

RESUMO

BACKGROUND: Macrophage-derived foam cells are a hallmark of atherosclerosis. Scavenger receptors, including lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR-1), are the principal receptors responsible for the uptake and modification of LDL, facilitating macrophage lipid load and the uptake of oxidized LDL by arterial wall cells. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates the expression of genes by binding to the promoter during transcription. Therefore, this study aimed to investigate the precise role of macrophage KLF15 in atherogenesis. METHODS: We used two murine models of atherosclerosis: mice injected with an adeno-associated virus (AAV) encoding the Asp374-to-Tyr mutant version of human PCSK9, followed by 12 weeks on a high-fat diet (HFD), and ApoE-/-- mice on a HFD. We subsequently injected mice with AAV-KLF15 and AAV-LacZ to assess the role of KLF15 in the development of atherosclerosis in vivo. Oil Red O, H&E, and Masson's trichome staining were used to evaluate atherosclerotic lesions. Western blots and RT-qPCR were used to assess protein and mRNA levels, respectively. RESULTS: We determined that KLF15 expression was downregulated during atherosclerosis formation, and KLF15 overexpression prevented atherosclerosis progression. KLF15 expression levels did not affect body weight or serum lipid levels in mice. However, KLF15 overexpression in macrophages prevented foam cell formation by reducing OLR-1-meditated lipid uptake. KLF15 directly targeted and transcriptionally downregulated OLR-1 levels. Restoration of OLR-1 reversed the beneficial effects of KLF15 in atherosclerosis. CONCLUSION: Macrophage KLF15 transcriptionally downregulated OLR-1 expression to reduce lipid uptake, thereby preventing foam cell formation and atherosclerosis. Thus, our results suggest that KLF15 is a potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Camundongos , Animais , Células Espumosas/metabolismo , Pró-Proteína Convertase 9/metabolismo , Macrófagos/metabolismo , Aterosclerose/patologia , Lipoproteínas LDL/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
3.
J Am Chem Soc ; 146(31): 21591-21599, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046081

RESUMO

Laplace NMR is a powerful tool for studying molecular dynamics and spin interactions, providing diffusion and relaxation information that complements Fourier NMR used for composition determination and structure elucidation. However, Laplace NMR demands sophisticated signal processing algorithms such as inverse Laplace transform (ILT). Due to the inherently ill-posed nature of ILT problems, it is generally challenging to perform satisfactory Laplace NMR processing and reconstruction, particularly for two-dimensional Laplace NMR. Herein, we propose a proof-of-concept approach that blends a physics-informed strategy with data-driven deep learning for two-dimensional Laplace NMR reconstruction. This approach integrates prior knowledge of mathematical and physical laws governing multidimensional decay signals by constructing a forward process model to simulate relationships among different decay factors. Benefiting from a noniterative neural network algorithm that automatically acquires prior information from synthetic data during training, this approach avoids tedious parameter tuning and enhances user friendliness. Experimental results demonstrate the practical effectiveness of this approach. As an advanced and impactful technique, this approach brings a fresh perspective to multidimensional Laplace NMR inversion.

4.
Mol Med ; 29(1): 91, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415103

RESUMO

BACKGROUND: E1A-associated 300-kDa protein (P300), an endogenous histone acetyltransferase, contributes to modifications of the chromatin landscape of genes involved in multiple cardiovascular diseases. Ferroptosis of vascular smooth muscle cells (VSMCs) is a novel pathological mechanism of aortic dissection. However, whether P300 regulates VSMC ferroptosis remains unknown. METHODS: Cystine deprivation (CD) and imidazole ketone erastin (IKE) were used to induce VSMC ferroptosis. Two different knockdown plasmids targeting P300 and A-485 (a specific inhibitor of P300) were used to investigate the function of P300 in the ferroptosis of human aortic smooth muscle cells (HASMCs). Cell counting kit-8, lactate dehydrogenase and flow cytometry with propidium iodide staining were performed to assess the cell viability and death under the treatment of CD and IKE. BODIPY-C11 assay, immunofluorescence staining of 4-hydroxynonenal and malondialdehyde assay were conducted to detect the level of lipid peroxidation. Furthermore, co-immunoprecipitation was utilized to explore the interaction between P300 and HIF-1α, HIF-1α and P53. RESULTS: Compared with normal control, the protein level of P300 was significantly decreased in HASMCs treated with CD and IKE, which was largely nullified by the ferroptosis inhibitor ferrostatin-1 but not by the autophagy inhibitor or apoptosis inhibitor. Knockdown of P300 by short-hairpin RNA or inhibition of P300 activity by A-485 promoted CD- and IKE-induced HASMC ferroptosis, as evidenced by a reduction in cell viability and aggravation of lipid peroxidation of HASMCs. Furthermore, we found that hypoxia-inducible factor-1α (HIF-1α)/heme oxygenase 1 (HMOX1) pathway was responsible for the impacts of P300 on ferroptosis of HASMCs. The results of co-immunoprecipitation demonstrated that P300 and P53 competitively bound HIF-1α to regulate the expression of HMOX1. Under normal conditions, P300 interacted with HIF-1α to inhibit HMOX1 expression, while reduced expression of P300 induced by ferroptosis inducers would favor HIF-1α binding to P53 to trigger HMOX1 overexpression. Furthermore, the aggravated effects of P300 knockdown on HASMC ferroptosis were largely nullified by HIF-1α knockdown or the HIF-1α inhibitor BAY87-2243. CONCLUSION: Thus, our results revealed that P300 deficiency or inactivation facilitated CD- and IKE-induced VSMC ferroptosis by activating the HIF-1α/HMOX1 axis, which may contribute to the development of diseases related to VSMC ferroptosis.


Assuntos
Ferroptose , Músculo Liso Vascular , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
BMC Cancer ; 23(1): 1257, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124049

RESUMO

PURPOSE: To explore the potential role of signal transducer and activator of transcription 5A (STAT5A) in the metastasis of breast cancer, and its mechanism of regulation underlying. METHODS AND RESULTS: TCGA datasets were used to evaluate the expression of STAT5A in normal and different cancerous tissues through TIMER2.0, indicating that STAT5A level was decreased in breast cancer tissues compared with normal ones. Gene Set Enrichment Analysis predicted that STAT5A was associated with the activation of immune cells and cell cycle process. We further demonstrated that the infiltration of immune cells was positively associated with STAT5A level. Influorescence staining revealed the expression and distribution of F-actin was regulated by STAT5A, while colony formation assay, wound healing and transwell assays predicted the inhibitory role of STAT5A in the colony formation, migratory and invasive abilities in breast cancer cells. In addition, overexpression of the Notch3 intracellular domain (N3ICD), the active form of Notch3, resulted in the increased expression of STAT5A. Conversely, silencing of Notch3 expression by siNotch3 decreased STAT5A expression, supporting that STAT5A expression is positively associated with Notch3 in human breast cancer cell lines and breast cancer tissues. Mechanistically, chromatin immunoprecipitation showed that Notch3 was directly bound to the STAT5A promoter and induced the expression of STAT5A. Moreover, overexpressing STAT5A partially reversed the enhanced mobility of breast cancer cells following Notch3 silencing. Low expression of Notch3 and STAT5A predicted poorer prognosis of patients with breast cancer. CONCLUSION: The present study demonstrates that Notch3 inhibits metastasis in breast cancer through inducing transcriptionally STAT5A, which was associated with tumor-infiltrating immune cells, providing a novel strategy to treat breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética , Imunoprecipitação da Cromatina , Receptor Notch3/genética , Proteínas Supressoras de Tumor/genética
6.
BMC Musculoskelet Disord ; 24(1): 675, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620819

RESUMO

OBJECTIVE: Exploring the correlation between bone turnover marks (BTMs) with lumbar BMD in middle-aged populations. METHODS: The cross-sectional analysis fetched data came from NHANES. The level of serum bone alkaline phosphatase (sBAP) and urinary N-telopeptide (uNTx) were regarded as representative of bone turnover. Lumbar BMD was the outcome of the study. Multivariable linear regression models were utilized to detect the correlation of sBAP and uNTx with Lumbar BMD. RESULTS: The level of sBAP and uNTx was negatively correlated with lumbar BMD in every multivariable linear regression. For sBAP, this inverse correlation was stable in both men and women (P < 0.01). uNTx indicated a negative association after all relevant covariables were adjusted (P < 0.01). The men group remained the negative correlation in gender subgroup analysis (P < 0.01). CONCLUSION: This study indicated that the increased level of sBAP and uNTx associated with lumbar BMD decreased among middle-aged adults. This correlation could prompt researchers to explore further the relationship between bone turnover rate and BMD, which may provide information for the early detection of BMD loss and provide a new strategy for clinical practice.


Assuntos
Fosfatase Alcalina , Densidade Óssea , Adulto , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Estudos Transversais , Inquéritos Nutricionais , Remodelação Óssea
7.
Chem Biodivers ; 20(4): e202300146, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36919922

RESUMO

Febrifugine is a kind of quinazolinone compound with high biological activity from a Chinese herb called Chang Shan (Dichroa febrifuga). Febrifugine and its derivatives possess extensive biological activities, some of which exhibited anti-tumor activities as FAK inhibitors. However, they are not very effective at inhibiting tumor metastasis, perhaps because tumors gain energy through compensatory activation of other signaling pathways that promote cell migration and invasion. Therefore, seventeen novel febrifugine derivatives with quinazolinone skeleton were designed, synthesized and acted as potential FAK/PLK1 dual inhibitors. These compounds were determined by 1 H-NMR, 13 C-NMR and MS. Most of the compounds exhibited good inhibitory activity against cancer cell lines by computer-assisted screening, antitumor activity test and FAK/PLK1 inhibitory activity test, wherein compound 3b was screened as a high-efficiency lead compound.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Quinazolinonas , Antineoplásicos/química , Linhagem Celular , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Esqueleto , Relação Estrutura-Atividade , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 Polo-Like
8.
Pharmacol Res ; 177: 106122, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149187

RESUMO

Smooth muscle cell (SMC) loss is the characteristic feature in the pathogenesis of aortic dissection (AD), and ferroptosis is a novel iron-dependent regulated cell death driven by the excessive lipid peroxidation accumulation. However, whether targeting ferroptosis is an effective approach for SMC loss and AD treatment remains unclear. Here, we found that the iron level, ferroptosis-related molecules TFR, HOMX1, ferritin and the lipid peroxidation product 4-hydroxynonenal were increased in the aorta of AD. Then, we screened several inhibitors of histone methyltransferases and found that BRD4770 had a protective effect on cystine deprivation-, imidazole ketone erastin- or RSL3-induced ferroptosis of SMCs. The classic ferroptosis pathways, System Xc--GPX4, FSP1-CoQ10 and GCH1-BH4 pathways which were inhibited by ferroptosis inducers, were re-activated by BRD4770 via inhibiting mono-, di- and tri- methylated histone H3 at lysine 9 (H3K9me1/2/3). RNA-sequencing analysis revealed that there was a positive feedback regulation between ferroptosis and inflammatory response, and BRD4770 can reverse the effects of inflammation activation on ferroptosis. More importantly, treatment with BRD4770 attenuated aortic dilation and decreased morbidity and mortality in a ß-Aminopropionitrile monofumarate-induced mouse AD model via inhibiting the inflammatory response, lipid peroxidation and ferroptosis. Taken together, our findings demonstrate that ferroptosis is a novel and critical pathological mechanism that is involved in SMC loss and AD development. BRD4770 is a novel ferroptosis inhibitor and has equivalent protective effect to Ferrostatin-1 at the optimal concentration. Translating insights into the anti-ferroptosis effects of BRD4770 may reveal a potential therapeutic approach for targeting SMC ferroptosis in AD.


Assuntos
Dissecção Aórtica , Ferroptose , Animais , Benzamidas , Benzimidazóis , Morte Celular , Ferro/metabolismo , Peroxidação de Lipídeos , Camundongos
9.
Chem Biodivers ; 19(6): e202200189, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35510593

RESUMO

A series of novel quinazolinone hydrazide derivatives were designed and synthesized as EGFR inhibitors. The results indicated that most of the aimed compounds had potential anti-tumor cell proliferation and EGFR inhibitory activities. In the comprehensive analysis of all the tested compounds, the target compound 9c showed the best anti-tumor cell proliferation activity, (IC50 =1.31 µM for MCF-7, IC50 =1.89 µM for HepG2, IC50 =2.10 µM for SGC), and IC50 =0.59 µM for the EGFR inhibitory activity. Docking results showed that compound 9c could ideally insert the active site and interact with the critical amino acid residues (Val702, Lys721, Met769, Asp831) in the active site.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Humanos , Hidrazinas/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinazolinonas/química , Relação Estrutura-Atividade
10.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293517

RESUMO

Wheat flour's end-use quality is tightly linked to the quantity and composition of storage proteins in the endosperm. TAM 111 and TAM 112 are two popular cultivars grown in the Southern US Great Plains with significantly different protein content. To investigate regulatory differences, transcriptome data were analyzed from developing grains at early- and mid-filling stages. At the mid-filling stage, TAM 111 preferentially upregulated starch metabolism-related pathways compared to TAM 112, whereas amino acid metabolism and transporter-related pathways were over-represented in TAM 112. Elemental analyses also indicated a higher N percentage in TAM 112 at the mid-filling stage. To explore the regulatory variation, weighted correlation gene network was constructed from publicly available RNAseq datasets to identify the modules differentially regulated in TAM 111 and TAM 112. Further, the potential transcription factors (TFs) regulating those modules were identified using graphical least absolute shrinkage and selection operator (GLASSO). Homologs of the OsNF-Y family members with known starch metabolism-related functions showed higher connectivities in TAM 111. Multiple TFs with high connectivity in TAM 112 had predicted functions associated with ABA response in grain. These results will provide novel targets for breeders to explore and further our understanding in mechanisms regulating grain development.


Assuntos
Proteínas de Plantas , Triticum , Triticum/metabolismo , Proteínas de Plantas/metabolismo , Farinha , Perfilação da Expressão Gênica , Grão Comestível/metabolismo , Transcriptoma , Fatores de Transcrição/metabolismo , Amido/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
11.
J Asthma ; 58(3): 326-333, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820665

RESUMO

OBJECTIVE: To evaluate the diagnostic value of fractional exhaled nitric oxide (FeNO) and maximum mid-expiratory flow (MMEF) for differentiating cough variant asthma (CVA) from chronic cough in patients with or without allergic rhinitis. METHODS: In total, 328 patients with chronic cough who underwent spirometry and FeNO testing were consecutively included in the retrospective analysis. Patients were divided into the CVA (n = 125) or NCVA (n = 203) groups according to the diagnostic criteria of CVA. Receiver operating characteristic (ROC) curves were established to assess the diagnostic efficiency and optimal cutoff points of FeNO and MMEF for the prediction of CVA. RESULTS: The optimal cutoff values of FeNO and MMEF to discriminate CVA from chronic cough were 24.5 ppb (AUC, 0.765; sensitivity, 69.60%; specificity 72.91%; PPV, 61.27%; NPV, 79.57%) and 66.2% (AUC, 0.771; sensitivity, 67.20%; specificity 78.33%; PPV, 65.63%; NPV, 79.50%). The optimal cutoff values of combining FeNO with MMEF to discriminate CVA from chronic cough were >22 ppb for FeNO and <62.6% for MMEF (AUC, 0.877). In patients with and without allergic rhinitis, the optimal cutoff point of FeNO to discriminate CVA from chronic cough was 24.5 ppb (AUC, 0.820) and 33.5 ppb (AUC, 0.707), respectively. CONCLUSIONS: FeNO and MMEF might have greater value as negative parameters for differentiating CVA from chronic cough. Combining FeNO and MMEF provided a significantly better prediction than either alone. The diagnostic accuracy of FeNO for predicting CVA in chronic cough patients with allergic rhinitis was higher than in chronic cough patients without allergic rhinitis.


Assuntos
Asma/diagnóstico , Asma/fisiopatologia , Tosse/diagnóstico , Tosse/fisiopatologia , Testes de Função Respiratória/métodos , Rinite Alérgica/fisiopatologia , Adolescente , Adulto , Idoso , Asma/classificação , Asma/epidemiologia , Tosse/epidemiologia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/análise , Curva ROC , Valores de Referência , Estudos Retrospectivos , Rinite Alérgica/epidemiologia , Adulto Jovem
12.
Bioorg Chem ; 116: 105342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536928

RESUMO

Thiazolidinedione (TZD) is a novel peroxides proliferator activated receptor γ (PPARγ) agonist with many side effects. Herein, we developed a series of novel TZD analogues as partial agonists targeting PPARγ. The study of anti-hyperglycemic activity and anti-inflammatory activity enabled us to identify a novel compound, 4 g, which quickly recover the blood glucose of mice at the concentration of 100 mg/kg, and show similar anti-inflammatory activity to ibuprofen at the concentration of 20 mg/kg. The competitive binding assay confirmed direct binding of 4 g to the LBD of PPARγ with IC50 being 1790 nM, and dose-dependently increased the transcriptional activity of PPARγ. Besides, through computer-aided drug design software simulation docking, it was found that compound 4 g showed the best binding ability to target protein PPARγ. Furthermore, because of the introduction of benzene containing group at N3 position, the stability of H12 in the active pocket is reduced and the stability of H3 and ß-fold is increased, showing the characteristics of some PPARγ agonists, based on the docking model analysis. Together, these results suggest that 4 g is a promising PPARγ agonist that deserves further investigation.


Assuntos
Desenho de Fármacos , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Software , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química
13.
Mol Med ; 25(1): 10, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925865

RESUMO

BACKGROUND: The pathological features of aortic dissection (AD) include vascular smooth muscle cell (VSMC) loss, elastic fiber fraction, and inflammatory responses in the aorta. However, little is known about the post-translational modification mechanisms responsible for these biological processes. METHODS: A total of 72 aorta samples, used for protein detection, were collected from 36 coronary artery disease (CAD, served as the control) patients and 36 type A AD (TAAD) patients. Chromatin immunoprecipitation (ChIP)-PCR was used to identify the genes regulated by H3K23ac, and tubastatin A, an inhibitor of HDAC6, was utilized to clarify the downstream mechanisms regulated by HDAC6. RESULTS: We found that the protein level of histone deacetylase HDAC6 was reduced in the aortas of patients suffering from TAAD and that the protein levels of H4K12ac, and H3K23ac significantly increased, while H3K18ac, H4K8ac, and H4K5ac dramatically decreased when compared with CAD patients. Although H3K23ac, H3K18ac, and H4K8ac increased in the human VSMCs after treatment with the HDAC6 inhibitor tubastatin A, only H3K23ac showed the same results in human tissues. Notably, the results of ChIP-PCR demonstrated that H3K23ac was enriched in extracellular matrix (ECM)-related genes, including Col1A2, Col3A1, CTGF, POSTN, MMP2, TIMP2, and ACTA2, in the aortic samples of TAAD patients. In addition, our results showed that HDAC6 regulates H4K20me2 and p-MEK1/2 in the pathological process of TAAD. CONCLUSIONS: These results indicate that HDAC6 is involved in human TAAD formation by regulating H3K23ac, H4K20me2 and p-MEK1/2, thus, providing a strategy for the treatment of TAAD by targeting protein post-translational modifications (PTMs), chiefly histone PTMs.


Assuntos
Aorta/metabolismo , Aneurisma Aórtico/metabolismo , Dissecção Aórtica/metabolismo , Desacetilase 6 de Histona/metabolismo , Idoso , Animais , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Feminino , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Processamento de Proteína Pós-Traducional , Coelhos
14.
Metabolomics ; 15(4): 57, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30937548

RESUMO

INTRODUCTION: Mitral valve disease (MVD), including mitral valve regurgitation (MR) and mitral valve stenosis (MS), is a chronic and progressive cardiac malady. However, the metabolic alterations in MVD is not well-understood till now. The current gold standard diagnostic test, transthoracic echocardiography, has limitations on high-throughput measurement and lacks molecular information for early diagnosis of the disease. OBJECTIVE: The present study aimed to investigate the biochemical alterations and to explore their diagnostic potential for MVD. METHODS: Plasma metabolic profile derangements and their diagnostic potential were non-invasively explored in 34 MR and 20 MS patients against their corresponding controls, using high-throughput NMR-based untargeted metabolomics. RESULTS: Eighteen differential metabolites were identified for MR and MS patients respectively, on the basis of multivariate and univariate data analysis, which were mainly involved in energy metabolism, amino acid metabolism, calcium metabolism and inflammation. These differential metabolites, notably the significantly down-regulated formate and lactate, showed high diagnostic potential for MVD by using Spearman's rank-order correlation analysis and ROC analysis. CONCLUSIONS: To the best of our knowledge, the present study is the first one that explores the metabolic derangements and their diagnostic values in MVD patients using metabolomics. The findings indicated that metabolic disturbance occurred in MVD patients, with plasma formate and lactate emerged as important candidate biomarkers for MVD.


Assuntos
Insuficiência da Valva Mitral/metabolismo , Estenose da Valva Mitral/metabolismo , Adulto , Idoso , Aminoácidos , Feminino , Coração/fisiologia , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/metabolismo , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Valva Mitral/metabolismo , Valva Mitral/fisiopatologia , Plasma/química , Curva ROC
15.
J Mater Sci Mater Med ; 30(4): 45, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30929087

RESUMO

Dental caries is primarily caused by pathogenic bacteria infection, and Streptococcus mutans is considered a major cariogenic pathogen. Moreover, antimicrobial peptides have been considered an alternative to traditional antibiotics in treating caries. This study aimed to design a tooth-binding antimicrobial peptide and evaluate its antimicrobial efficacy against S. mutans. An antimicrobial peptide of polyphemusin I (PI) was modified by grafting a tooth-binding domain of diphosphoserine (Ser(p)-Ser(p)-) to create the peptide of Ser(p)-Ser(p)-polyphemusin I (DPS-PI). PI and DPS-PI were synthesized by Fmoc solid-phase peptide synthesis. The minimum inhibitory concentration of PI and DPS-PI against S. mutans were tested. Scanning electron microscopy (SEM) were used to observe the growth of S. mutans on PI and DPS-PI treated enamel surfaces. The growth of S. mutans was evaluated by optical density (OD) at 590 nm. Inhibition of dental plaque biofilm development in vivo were investigated. The cytocompatibility to bone mesenchymal stem cells (BMSCs) was tested. The MIC of PI and DPS-PI were 40 and 80 µg/ml, respectively. SEM images showed that S. mutans were sparsely distributed on the DPS-PI treated enamel surface. OD findings indicated that DPS-PI maintained its inhibition effect on S. mutans growth after 24 h. The incisor surfaces of rabbits treated with DPS-PI developed significantly less dental plaque biofilm than that on PI treated surfaces. The DPS-PI had good biocompatibility with the cells. We successfully constructed a novel tooth-binding antimicrobial peptide against S. mutans in vitro and inhibited dental plaque biofilm development in vivo. DPS-PI may provide a feasible alternative to conventional antibiotics for the prevention and treatment of dental caries. Dental caries is primarily caused by pathogenic bacteria infection, and Streptococcus mutans is considered a major cariogenic pathogen. A tooth-binding antimicrobial peptide was designed by grafted diphosphoserine (-Ser(p)-Ser(p)-) to the structure of polyphemusin I. This novel tooth-binding antimicrobial peptide can inhibit dental plaque biofilm development and thus provide a feasible alternative to conventional antibiotics for the prevention and treatment of dental caries.


Assuntos
Anti-Infecciosos/metabolismo , Biofilmes/efeitos dos fármacos , Placa Dentária/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Dente/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/farmacocinética , Bovinos , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Placa Dentária/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Fragmentos de Peptídeos/farmacocinética , Ligação Proteica , Streptococcus mutans/efeitos dos fármacos , Propriedades de Superfície
16.
Zhonghua Nan Ke Xue ; 23(11): 1025-1031, 2017 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-29738170

RESUMO

OBJECTIVE: To explore the protective effect of Tongjingling (TJL) against sperm DNA damage and oxidative stress in the rat model of experimental varicocele (EVC). METHODS: We randomly divided 75 Wistar male rats into five groups of equal number: sham operation, EVC model, high-dose TJL, mid-dose TJL, and low-dose TJL. The EVC model was established in the rats by partial ligation of the left renal vein, followed by 8 weeks of medication from the 4th week after modeling. Then we observed the general status of the rats, detected the sperm DNA fragmentation index (DFI) in the epididymis by sperm chromatin structure assay (SCSA), and measured the content of hydroperoxide (H2O2) and the activities of catalase (CAT) and superoxide dismutase (SOD) in the testis by colorimetry. RESULTS: Compared with the sham operation group, the EVC models showed significantly increased sperm DFI in the epididymis (P <0.01) and elevated level of H2O2 and activities of CAT and SOD in the testis (P <0.01). In comparison with the EVC models, the rats of the TJL groups exhibited remarkably reduced sperm DFI and H2O2 content, but increased activities of SOD and CAT. CONCLUSIONS: TJL can improve sperm DNA integrity by increasing the activities of SOD and CAT and reducing the H2O2 level and hence oxidative stress in the testis tissue.


Assuntos
Fragmentação do DNA , DNA/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Testículo/efeitos dos fármacos , Varicocele/genética , Varicocele/metabolismo , Animais , Catalase/análise , Epididimo/química , Humanos , Peróxido de Hidrogênio/análise , Ligadura , Masculino , Estresse Oxidativo , Distribuição Aleatória , Ratos , Ratos Wistar , Espermatozoides , Superóxido Dismutase/análise , Testículo/química , Varicocele/etiologia
17.
Transpl Int ; 29(8): 941-52, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27125343

RESUMO

Recognition of evolutionarily conserved ligands by Toll-like receptors (TLRs) triggers signaling cascades in innate immune cells to amplify adaptive immune responses. Nearly all TLRs require MyD88 to transduce downstream signaling. MyD88 deficiency has been shown to promote the allograft acceptance in mice. However, direct evidence for therapeutic potential of MyD88 inhibitors remains lacking. Herein, we used a MyD88 inhibitor, namely ST2825, to explore its therapeutic potential and mechanisms in fully allogeneic skin and heart transplant models. Phenotypic maturation of dendritic cells stimulated by TLR ligands was alleviated by ST2825 in parallel with reduced T-cell proliferation in vitro. A short-course treatment with ST2825 significantly prolonged cardiac graft survival (mean survival time = 18.5 ± 0.92 days vs. 7.25 ± 0.46 days). ST2825-treated group had significantly reduced proinflammatory cytokines in allografts compared with control group. ST2825 combined with anti-CD154 induced long-term skin allograft acceptance in about one-third of recipients (>100 days). 'Skin-tolerant' recipients showed attenuated donor-specific IFN-γ responses, intact IL-4 responses, and compromised alloantibody responses. We conclude that MyD88 inhibitor ST2825 attenuates acute cardiac rejection and promotes donor-specific hyporesponsiveness in stringent skin transplant models. The direct evidence suggests that pharmacological inhibition of MyD88 hold promising potential for transplant rejection.


Assuntos
Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Transplante de Coração/métodos , Compostos Heterocíclicos com 2 Anéis/farmacologia , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Compostos de Espiro/farmacologia , Animais , Ligante de CD40/metabolismo , Ilhas de CpG , Células Dendríticas/citologia , Feminino , Rejeição de Enxerto/imunologia , Inflamação , Isoanticorpos/imunologia , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pele/patologia , Transplante de Pele , Doadores de Tecidos , Tolerância ao Transplante , Transplante Homólogo
18.
Exp Gerontol ; 192: 112440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679351

RESUMO

BACKGROUND: Cognitive impairment contributes significantly to negative health outcomes. This meta-analysis aimed to investigate the association between cognitive impairment and cardiovascular mortality in mature and older adults. METHODS: PubMed, Web of Science, and Embase databases were searched until February 10, 2024, to identify the association between cognitive impairment and cardiovascular mortality in mature and older adults (aged 50 years and older) from the general population. The adjusted risk estimates from the included studies were extracted and pooled using a random effects model. RESULTS: Ten studies were included in the meta-analysis, involving 16,765 participants. The pooled hazard ratio (HR) of cardiovascular mortality was 1.75 (95 % confidence interval [CI] 1.44-2.14; I2 = 48.2 %) for individuals with cognitive impairment compared to those without, even after adjusting for common confounding factors. Subgroup analysis revealed that the prognostic value of cognitive impairment may be influenced by the assessment tools used for measuring cognition. Additionally, cognitive impairment significantly predicted cardiovascular mortality in women (HR 2.40; 95 % CI 1.54-3.74; I2 = 45.4 %) but not in men (HR 1.49; 95 % CI 0.99-2.24; I2 = 44.8 %). CONCLUSIONS: Cognitive impairment is a significant predictor of cardiovascular mortality in mature and older adults from the general population. However, future studies are needed to evaluate the specific impact of cognitive impairment on different genders.


Assuntos
Doenças Cardiovasculares , Disfunção Cognitiva , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Cardiovasculares/mortalidade , Disfunção Cognitiva/mortalidade , Modelos de Riscos Proporcionais , Fatores de Risco
19.
Micromachines (Basel) ; 15(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38675299

RESUMO

In the era of widespread edge computing, energy conservation modes like complete power shutdown are crucial for battery-powered devices, but they risk data loss in volatile memory. Energy autonomous systems, relying on ambient energy, face operational challenges due to power losses. Recent advancements in emerging nonvolatile memories (NVMs) like FRAM, RRAM, MRAM, and PCM offer mature solutions to sustain work progress with minimal energy overhead during outages. This paper thoroughly reviews utilizing emerging NVMs in microcontroller units (MCUs), comparing their key attributes to describe unique benefits and potential applications. Furthermore, we discuss the intricate details of NVM circuit design and NVM-driven compute-in-memory (CIM) architectures. In summary, integrating emerging NVMs into MCUs showcases promising prospects for next-generation applications such as Internet of Things and neural networks.

20.
Front Endocrinol (Lausanne) ; 15: 1402937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045274

RESUMO

Background: The relationship between the intake of dietary fatty acids (FA) and bone mineral density (BMD) has been the subject of prior investigations. However, the outcomes of these studies remain contentious. The objective of this research is to examine the link between dietary FA consumption among adolescents and BMD. Methods: This study utilized high-quality data from the National Health and Nutrition Examination Survey database, spanning 2011 to 2018, to explore the association between dietary fatty acids and bone health indicators in adolescents, including BMD and bone mineral content (BMC). Analyses were performed using weighted multivariate linear regression models, incorporating detailed subgroup analysis. Results: The study included 3440 participants. Analysis demonstrated that intake of saturated fatty acids (SFA) was positively correlated with total BMD, left arm BMD, total BMC, and left arm BMC. Monounsaturated fatty acid (MUFA) intake was positively correlated with BMC across most body parts, though it showed no correlation with BMD. Intake of polyunsaturated fatty acids (PUFA) was significantly inversely correlated with both BMD and BMC in most body parts. Additionally, subgroup analysis indicated that variables such as sex, age, standing height, and race significantly influenced the correlation between FA intake and BMD. Conclusions: Our study indicates that dietary intake of SFA may benefit to BMD in adolescents, in contrast to PUFA and MUFA. Therefore, we recommend that adolescents maintain a balanced intake of SFA to promote optimal bone mass development while preserving metabolic health.


Assuntos
Densidade Óssea , Ácidos Graxos , Inquéritos Nutricionais , Humanos , Densidade Óssea/efeitos dos fármacos , Adolescente , Feminino , Masculino , Criança , Ácidos Graxos/administração & dosagem , Adulto Jovem , Gorduras na Dieta/administração & dosagem , Estudos Transversais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa