RESUMO
Increasing evidences suggest that mitochondrial dysfunction is implicated in diseases and aging, and whole-genome sequencing (WGS) is the most unbiased method in analyzing the mitochondrial genome (mtDNA). However, the genetic landscape of mtDNA in the Chinese population has not been fully examined. Here, we described the genetic landscape of mtDNA using WGS data from Chinese individuals (n = 3241). We identified 3892 mtDNA variants, of which 3349 (86%) were rare variants. Interestingly, we observed a trend toward extreme heterogeneity of mtDNA variants. Our study observed a distinct purifying selection on mtDNA, which inhibits the accumulation of harmful heteroplasmies at the individual level: (1) mitochondrial dN/dS ratios were much <1; (2) the dN/dS ratio of heteroplasmies was higher than homoplasmies; (3) heteroplasmies had more indels and predicted deleterious variants than homoplasmies. Furthermore, we found that haplogroup M (20.27%) and D (20.15%) had the highest frequencies in the Chinese population, followed by B (18.51%) and F (16.45%). The number of variants per individual differed across haplogroup groups, with a higher number of homoplasmies for the M lineage. Meanwhile, mtDNA copy number was negatively correlated with age but positively correlated with the female sex. Finally, we developed an mtDNA variation database of Chinese populations called MTCards (http://genemed.tech/mtcards/) to facilitate the query of mtDNA variants in this study. In summary, these findings contribute to different aspects of understanding mtDNA, providing a better understanding of the genetic basis of mitochondrial-related diseases.
Assuntos
Genoma Mitocondrial , DNA Mitocondrial/genética , Feminino , Genoma Humano/genética , Genoma Mitocondrial/genética , Humanos , Mitocôndrias/genética , Sequenciamento Completo do GenomaRESUMO
A proportion of previously defined benign variants or variants of uncertain significance in humans, which are challenging to identify, may induce an abnormal splicing process. An increasing number of methods have been developed to predict splicing variants, but their performance has not been completely evaluated using independent benchmarks. Here, we manually sourced â¼50 000 positive/negative splicing variants from > 8000 studies and selected the independent splicing variants to evaluate the performance of prediction methods. These methods showed different performances in recognizing splicing variants in donor and acceptor regions, reminiscent of different weight coefficient applications to predict novel splicing variants. Of these methods, 66.67% exhibited higher specificities than sensitivities, suggesting that more moderate cut-off values are necessary to distinguish splicing variants. Moreover, the high correlation and consistent prediction ratio validated the feasibility of integration of the splicing prediction method in identifying splicing variants. We developed a splicing analytics platform called SPCards, which curates splicing variants from publications and predicts splicing scores of variants in genomes. SPCards also offers variant-level and gene-level annotation information, including allele frequency, non-synonymous prediction and comprehensive functional information. SPCards is suitable for high-throughput genetic identification of splicing variants, particularly those located in non-canonical splicing regions.
Assuntos
Splicing de RNA , Humanos , Splicing de RNA/genética , Frequência do Gene , Anotação de Sequência MolecularRESUMO
De novo mutations (DNMs) significantly contribute to sporadic diseases, particularly in neuropsychiatric disorders. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) provide effective methods for detecting DNMs and prioritizing candidate genes. However, it remains a challenge for scientists, clinicians, and biologists to conveniently access and analyse data regarding DNMs and candidate genes from scattered publications. To fill the unmet need, we integrated 580 799 DNMs, including 30 060 coding DNMs detected by WES/WGS from 23 951 individuals across 24 phenotypes and prioritized a list of candidate genes with different degrees of statistical evidence, including 346 genes with false discovery rates <0.05. We then developed a database called Gene4Denovo (http://www.genemed.tech/gene4denovo/), which allowed these genetic data to be conveniently catalogued, searched, browsed, and analysed. In addition, Gene4Denovo integrated data from >60 genomic sources to provide comprehensive variant-level and gene-level annotation and information regarding the DNMs and candidate genes. Furthermore, Gene4Denovo provides end-users with limited bioinformatics skills to analyse their own genetic data, perform comprehensive annotation, and prioritize candidate genes using custom parameters. In conclusion, Gene4Denovo conveniently allows for the accelerated interpretation of DNM pathogenicity and the clinical implication of DNMs in humans.
Assuntos
Bases de Dados Genéticas , Predisposição Genética para Doença , Anotação de Sequência Molecular , Mutação , Software , Biologia Computacional/métodos , Humanos , Sequenciamento do Exoma/métodosRESUMO
This study aimed to determine the mutational spectrum of familial Parkinson's disease and sporadic early-onset Parkinson's disease (sEOPD) in a mainland Chinese population and the clinical features of mutation carriers. We performed multiplex ligation-dependent probe amplification assays and whole-exome sequencing for 1676 unrelated patients with Parkinson's disease in a mainland Chinese population, including 192 probands from families with autosomal-recessive Parkinson's disease, 242 probands from families with autosomal-dominant Parkinson's disease, and 1242 sEOPD patients (age at onset ≤ 50). According to standards and guidelines from the American College of Medical Genetics and Genomics, pathogenic/likely pathogenic variants in 23 known Parkinson's disease-associated genes occurred more frequently in the autosomal-recessive Parkinson's disease cohort (65 of 192, 33.85%) than in the autosomal-dominant Parkinson's disease cohort (10 of 242, 4.13%) and the sEOPD cohort (57 of 1242, 4.59%), which leads to an overall molecular diagnostic yield of 7.88% (132 of 1676). We found that PRKN was the most frequently mutated gene (n = 83, 4.95%) and present the first evidence of an SNCA duplication and LRRK2 p.N1437D variant in mainland China. In addition, several novel pathogenic/likely pathogenic variants including LRRK2 (p.V1447M and p.Y1645S), ATP13A2 (p.R735X and p.A819D), FBXO7 (p.G67E), LRP10 (c.322dupC/p.G109Rfs*51) and TMEM230 (c.429delT/p.P144Qfs*2) were identified in our cohort. Furthermore, the age at onset of the 132 probands with genetic diagnoses (median, 31.5 years) was about 14.5 years earlier than that of patients without molecular diagnoses (i.e. non-carriers, median 46.0 years). Specifically, the age at onset of Parkinson's disease patients with pathogenic/likely pathogenic variants in ATP13A2, PLA2G6, PRKN, or PINK1 was significantly lower than that of non-carriers, while the age at onset of carriers with other gene pathogenic/likely pathogenic variants was similar to that of non-carriers. The clinical spectrum of Parkinson's disease-associated gene carriers in this mainland Chinese population was similar to that of other populations. We also detected 61 probands with GBA possibly pathogenic variants (3.64%) and 59 probands with GBA p.L444P (3.52%). These results shed insight into the genetic spectrum and clinical manifestations of Parkinson's disease in mainland China and expand the existing repertoire of pathogenic or likely pathogenic variants involved in known Parkinson's disease-associated genes. Our data highlight the importance of genetic testing in Parkinson's disease patients with age at onset < 40 years, especially in those from families with a recessive inheritance pattern, who may benefit from early diagnosis and treatment.
Assuntos
Predisposição Genética para Doença/genética , Doença de Parkinson/genética , Adulto , Idade de Início , Povo Asiático/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Sleep deprivation (SD) is known to be associated with metabolic disorders and chronic diseases. Complex metabolic alterations induced by SD at omics scale and the associated biomarker candidates have been proposed. However, in vivo systemic and local metabolic shift patterns of the metabolome and lipidome in acute and chronic partial SD models remain to be elucidated. In the present study, the serum, hypothalamus, and hippocampus CA1 of sleep-deprived rats (SD rats) from acute and chronic sleep restriction models were analyzed using three different omics platforms for the discovery and mechanistic assessment of systemic and local SD-induced dysregulated metabolites. We found a similar pattern of systemic metabolome alterations between two models, for which the area under the curve (AUC) of receiver operating characteristic curves was AUC = 0.847 and 0.930 with the pseudotargeted and untargeted metabolomics approach, respectively. However, SD-induced systemic lipidome alterations were significantly different and appeared to be model-dependent (AUC = 0.374). Comprehensive pathway analysis of the altered lipidome and metabolome in the hypothalamus indicated the abnormal behavior of eight metabolic and lipid metabolic pathways. The metabolic alterations of the hippocampus CA1 was subtle in two SD models. Collectively, these results extend our understanding of the quality of sleep and suggest metabolic targets in developing diagnostic biomarkers for better SD control.
Assuntos
Lipidômica/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Privação do Sono/genética , Animais , Biomarcadores/metabolismo , Humanos , Lipídeos/genética , Redes e Vias Metabólicas/genética , Metaboloma/genética , Ratos , Privação do Sono/metabolismo , Privação do Sono/patologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologiaRESUMO
BACKGROUND/AIMS: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors with poor prognosis. Conventional chemotherapies including gemcitabine have failed owing to weak response and side effects. Hence novel treatment regimens are urgently needed to improve the therapeutic efficacy. In this study, we aimed to assess the anticancer activity of melatonin and sorafenib as a novel therapy against PDAC. METHODS: We used various apoptosis assay and PDAC xenograft model to assess anticancer effect in vitro and in vivo. We applied phospho-receptor tyrosine kinase (RTK) array and phospho-tyrosine kinase array to explore the mechanism of the combined therapy. Western blotting, proximity ligation assay, and immunoprecipitation assay were also performed for validation. RESULTS: Melatonin synergized with sorafenib to suppress the growth of PDAC both in vitro and in vivo. The effect was due to increased apoptosis rate of PDAC cells that was accompanied by mitochondria dysfunction. The enhanced anticancer efficacy by the co-treatment could be explained by blockade of PDGFR-ß/STAT3 signaling pathway and melatonin receptor (MT)-mediated STAT3. CONCLUSIONS: Melatonin reinforces the anticancer activity of sorafenib by downregulation of PDGFR-ß/STAT3 signaling pathway and melatonin receptor (MT)-mediated STAT3. The combination of the two agents might be a potential therapeutic strategy for treating PDAC.
Assuntos
Melatonina/farmacologia , Proteínas de Neoplasias/metabolismo , Niacinamida/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Melatonina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Melatonina/agonistas , Niacinamida/agonistas , Niacinamida/farmacologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Compostos de Fenilureia/agonistas , SorafenibeRESUMO
To investigate the amino acid transporter-based prodrug anticancer strategy further, several amino acid-conjugated amide gemcitabine prodrugs were synthesized to target amino acid transporters in pancreatic cancer cells. The structures of the synthesized amino acid-conjugated prodrugs were confirmed by ¹H-NMR and LC-MS. The pancreatic cancer cells, AsPC1, BxPC-3, PANC-1 and MIAPaCa-2, appeared to overexpress the amino acid transporter LAT-1 by conventional RT-PCR. Among the six amino acid derivatives of gemcitabine, threonine derivative of gemcitabine (Gem-Thr) was more effective than free gemcitabine in the pancreatic cancer cells, BxPC-3 and MIAPaCa-2, respectively, in terms of anti-cancer effects. Furthermore, Gem-Thr was metabolically stable in PBS (pH 7.4), rat plasma and liver microsomal fractions. When Gem-Thr was administered to rats at 4 mg/kg i.v., Gem-Thr was found to be successfully converted to gemcitabine via amide bond cleavage. Moreover, the Gem-Thr showed the increased systemic exposure of formed gemcitabine by 1.83-fold, compared to free gemcitabine treatment, due to the significantly decreased total clearance (0.60 vs. 4.23 mL/min/kg), indicating that the amide prodrug approach improves the metabolic stability of gemcitabine in vivo. Taken together, the amino acid transporter-targeting gemcitabine prodrug, Gem-Thr, was found to be effective on pancreatic cancer cells and to offer an efficient potential means of treating pancreatic cancer with significantly better pharmacokinetic characteristics than gemcitabine.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Treonina/química , Aminoácidos , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Técnicas de Química Sintética , Cromatografia Líquida , Cromatografia em Camada Fina , Desoxicitidina/química , Modelos Animais de Doenças , Monitoramento de Medicamentos , Estabilidade de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
INTRODUCTION: Idiopathic hypogonadotropic hypogonadism (IHH) is a rare reproductive disorder resulting from gonadotropin-releasing hormone (GnRH) deficiency. However, in only approximately half of patients with IHH is it possible to identify a likely molecular diagnosis. Mice lacking Slit2 have a reduced number or altered patterning of GnRH neurons in the brain. In order to assess the contribution of SLIT2 to IHH, we carried out a candidate gene burden test analysis. METHODS: A total of 196 IHH probands and 2,362 ethic-matched controls were recruited for this study. The IHH probands and controls were subjected to whole-exome sequencing. In the IHH patients with SLIT2 variants and their available family members, detailed phenotyping and segregation analysis were performed. RESULTS: Nine heterozygous SLIT2 rare sequencing variants (RSVs) were identified in 13 probands, with a prevalence of 6.6%. Furthermore, we identified an increased mutational burden for SLIT2 in this cohort (odds ratio = 2.2, p = 0.021). The segregation analysis of available IHH families revealed that the majority of SLIT2 RSVs were inherited from unaffected or partially affected parents. CONCLUSION: Our study suggests SLIT2 as a new IHH-associated gene and expands the clinical and genetic spectrum of IHH. Furthermore, SLIT2 alone does not appear to be sufficient to cause the disorder, and it may interact with other IHH-associated genes to induce a clinical phenotype.
Assuntos
Hipogonadismo , Animais , Hormônio Liberador de Gonadotropina/genética , Heterozigoto , Humanos , Hipogonadismo/epidemiologia , Hipogonadismo/genética , Camundongos , Mutação , FenótipoRESUMO
KRAS activating mutations, which are present in more than 90% of pancreatic cancers, drive tumor dependency on the RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Therefore, combined targeting of RAS/MAPK and PI3K/AKT signaling pathways may be required for optimal therapeutic effect in pancreatic cancer. However, the therapeutic efficacy of combined MAPK and PI3K/AKT signaling target inhibitors is unsatisfactory in pancreatic cancer treatment, because it is often accompanied by MAPK pathway reactivation by PI3K/AKT inhibitor. Therefore, we developed an inRas37 antibody, which directly targets the intra-cellularly activated GTP-bound form of oncogenic RAS mutation and investigated its synergistic effect in the presence of the PI3K inhibitor BEZ-235 in pancreatic cancer. In this study, inRas37 remarkably increased the drug response of BEZ-235 to pancreatic cancer cells by inhibiting MAPK reactivation. Moreover, the co-treatment synergistically inhibited cell proliferation, migration, and invasion and exhibited synergistic anticancer activity by inhibiting the MAPK and PI3K pathways. The combined administration of inRas37and BEZ-235 significantly inhibited tumor growth in mouse models. Our results demonstrated that inRas37 synergistically increased the antitumor activity of BEZ-235 by inhibiting MAPK reactivation, suggesting that inRas37 and BEZ-235 co-treatment could be a potential treatment approach for pancreatic cancer patients with KRAS mutations.
RESUMO
Recent studies have suggested ARSA, a gene responsible for metachromatic leukodystrophy, could be a genetic modifier of Parkinson's disease (PD) pathogenesis, acting as a molecular chaperone for α-synuclein. To elucidate the role of ARSA variants in PD, we did a comprehensive analysis of ARSA variants by performing next-generation sequencing on 477 PD families, 1440 sporadic early-onset PD patients and 1962 sporadic late-onset PD patients and 2636 controls from Chinese mainland, as well as the association between ARSA variants and cognitive function of PD patients. We identified 2 familial PD following autosomal dominant inherence carrying rare variants of ARSA, but they had limited clinical significance. We detected a total of 81 coding variants of ARSA in our subjects but none of the identified variants were associated with either susceptibility or cognitive performance of PD, while loss-of-function variants showed slightly increased burden in late-onset PD (0.25% vs. 0%, p = 0.08). Our results suggested ARSA may not play important roles in PD of Chinese population.
Assuntos
Cerebrosídeo Sulfatase/genética , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Variação Genética/genética , Resultados Negativos , Doença de Parkinson/genética , Povo Asiático/genética , Cerebrosídeo Sulfatase/fisiologia , Feminino , Humanos , Mutação com Perda de Função/genética , Masculino , alfa-SinucleínaRESUMO
The clinical similarity among different neuropsychiatric disorders (NPDs) suggested a shared genetic basis. We catalogued 23,109 coding de novo mutations (DNMs) from 6511 patients with autism spectrum disorder (ASD), 4,293 undiagnosed developmental disorder (UDD), 933 epileptic encephalopathy (EE), 1022 intellectual disability (ID), 1094 schizophrenia (SCZ), and 3391 controls. We evaluated that putative functional DNMs contribute to 38.11%, 34.40%, 33.31%, 10.98% and 6.91% of patients with ID, EE, UDD, ASD and SCZ, respectively. Consistent with phenotype similarity and heterogeneity in different NPDs, they show different degree of genetic association. Cross-disorder analysis of DNMs prioritized 321 candidate genes (FDR < 0.05) and showed that genes shared in more disorders were more likely to exhibited specific expression pattern, functional pathway, genetic convergence, and genetic intolerance.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Esquizofrenia , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/genética , Mutação , FenótipoRESUMO
Non-coding variants in the human genome significantly influence human traits and complex diseases via their regulation and modification effects. Hence, an increasing number of computational methods are developed to predict the effects of variants in human non-coding sequences. However, it is difficult for inexperienced users to select appropriate computational methods from dozens of available methods. To solve this issue, we assessed 12 performance metrics of 24 methods on four independent non-coding variant benchmark datasets: (1) rare germline variants from clinical relevant sequence variants (ClinVar), (2) rare somatic variants from catalogue of somatic mutations in cancer (COSMIC), (3) common regulatory variants from curated expression quantitative trait loci (eQTL) data, and (4) disease-associated common variants from curated genome-wide association studies (GWAS). All 24 tested methods performed differently under various conditions, indicating varying strengths and weaknesses under different scenarios. Importantly, the performance of existing methods was acceptable for rare germline variants from ClinVar with the area under the curve (AUC) of 0.4481-0.8033 and poor for rare somatic variants from COSMIC (AUC: 0.4984-0.7131), common regulatory variants from curated eQTL data (AUC: 0.4837-0.6472), and disease-associated common variants from curated GWAS (AUC: 0.4766-0.5188). We also compared the prediction performance of 24 methods for non-coding de novo mutations in autism spectrum disorder and found that the combined annotation-dependent depletion (CADD) and context-dependent tolerance score (CDTS) methods showed better performance. Summarily, we assessed the performance of 24 computational methods under diverse scenarios, providing preliminary advice for proper tool selection, guiding the development of new techniques in interpreting non-coding variants.
RESUMO
Background: Short tandem repeats (STRs) are highly variable elements that play a pivotal role in multiple genetic diseases and the regulation of gene expression. Long-read sequencing (LRS) offers a potential solution to genome-wide STR analysis. However, characterizing STRs in human genomes using LRS on a large population scale has not been reported. Methods: We conducted the large LRS-based STR analysis in 193 unrelated samples of the Chinese population and performed genome-wide profiling of STR variation in the human genome. The repeat dynamic index (RDI) was introduced to evaluate the variability of STR. We sourced the expression data from the Genotype-Tissue Expression to explore the tissue specificity of highly variable STRs related genes across tissues. Enrichment analyses were also conducted to identify potential functional roles of the high variable STRs. Results: This study reports the large-scale analysis of human STR variation by LRS and offers a reference STR database based on the LRS dataset. We found that the disease-associated STRs (dSTRs) and STRs associated with the expression of nearby genes (eSTRs) were highly variable in the general population. Moreover, tissue-specific expression analysis showed that those highly variable STRs related genes presented the highest expression level in brain tissues, and enrichment pathways analysis found those STRs are involved in synaptic function-related pathways. Conclusion: Our study profiled the genome-wide landscape of STR using LRS and highlighted the highly variable STRs in the human genome, which provide a valuable resource for studying the role of STRs in human disease and complex traits.
RESUMO
INTRODUCTION: Transforming growth factor-ß1 (TGF-ß1) is implicated in bladder fibrosis after spinal cord injury (SCI) and in the fibrosis in the corpus cavernosum tissue after cavernous nerve injury. AIM: We investigated the differential expression of TGF-ß1 and the Smad transcription factor, the key molecule for the initiation of TGF-ß-mediated fibrosis, in cavernous tissue from SCI patients. METHODS: After obtaining informed consent and approval from the patients and our institutional review board, we enrolled 5 patients with psychogenic erectile dysfunction (ED) (mean age 36.8 years; range 20-50 years) and 10 patients with neurogenic ED from SCI (mean age 38.8 years; range 18-50 years). Cavernous tissues were obtained by percutaneous biopsy and stained with Masson trichrome, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL), or antibodies to TGF-ß1 and phospho-Smad2. MAIN OUTCOME MEASURES: Semi-quantitative analysis of TGF-ß1 and phospho-Smad2 was performed, and the numbers of apoptotic cells were counted. We also quantified the cavernous collagen area with the use of an image analyzer system. RESULTS: The expression of TGF-ß1 and phospho-Smad2 protein was significantly higher in the SCI group than in the psychogenic group. The TUNEL assay revealed a higher apoptotic index in the SCI group than in the psychogenic group. Higher TGF-ß1 and phospho-Smad2 expression and more apoptotic cells were noted mainly in endothelial cells, smooth muscle cells, and fibroblasts of the SCI group. Double labeling of cavernous tissue with TUNEL and antibody to phospho-Smad2 revealed that most TUNEL-positive cells showed immunoreactivity to phospho-Smad2 staining. Cavernous collagen content was significantly greater in the SCI group than in the psychogenic group. CONCLUSION: Upregulation of TGF-ß1 and activation of the Smad signaling pathway may play important roles in SCI-induced cavernous fibrosis and deterioration of erectile function, which warrants early pharmacological intervention to protect erectile tissue from irreversible damage.
Assuntos
Disfunção Erétil/etiologia , Pênis/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Traumatismos da Medula Espinal/complicações , Fator de Crescimento Transformador beta1/metabolismo , Adolescente , Adulto , Disfunção Erétil/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Pessoa de Meia-Idade , Pênis/química , Proteína Smad2/análise , Fator de Crescimento Transformador beta1/análise , Adulto JovemRESUMO
BACKGROUND: The expression pattern represents a quantitative phenotype that provides an in-depth view of the molecular mechanism in Parkinson's disease (PD); however, the expression patterns of PD-associated genes (PAGs) and their relation to age at onset (AAO) remain unclear. METHODS: The known PD-causing genes and PD-risk genes, which were collected from latest published authoritative meta-analysis, were integrated as PAGs. The expression data from Genotype-Tissue Expression database, Allen Brian Map database, and BrainSpan database, were extracted to characterize the tissue specificity, inhibitory-excitatory neuron expression profile, and spatio-temporal expression pattern of PAGs, respectively. The AAO information of PD-causing gene was download from Gene4PD and MDSgene database. RESULTS: We prioritized 107 PAGs and found that the PAGs were more likely to be expressed in brain-related tissues than non-brain tissues and that more PAGs had higher expression levels in excitatory neurons than inhibitory neurons. In addition, we identified two spatio-temporal expression modules of PAGs in human brain: the first module showed a higher expression level in the adult period than in the prenatal period, and the second module showed the opposite features. It showed that more PAGs belong to the first module that the second module. Furthermore, we found that the median AAO of patients with mutations in PD-causing genes of the first module was lower than that of the second module. CONCLUSION: In conclusion, this study provided comprehensive landscape of expression patterns, AAO features and their relationship for the first time, improving the understanding of pathogenesis, and precision medicine in PD.
RESUMO
Oncogenic KRASG12D induces neoplastic transformation of pancreatic acinar cells through acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN), and drives pancreatic ductal adenocarcinoma (PDAC). Angiopoietin-like 4 (ANGPTL4) is known to be involved in the regulation of cancer growth and metastasis. However, whether ANGPTL4 affects KRASG12D-mediated ADM and early PDAC intervention remains unknown. In the current study, we investigated the role of ANGPTL4 in KRASG12D-induced ADM, PanIN formation, and PDAC maintenance. We found that ANGPTL4 was highly expressed in human and mouse ADM lesions and contributed to the promotion of KRASG12D-driven ADM in mice. Consistently, ANGPTL4 rapidly induced ADM in three-dimensional culture of acinar cells with KRAS mutation and formed ductal cysts that silenced acinar genes and activated ductal genes, which are characteristic of in vivo ADM/PanIN lesions. We also found that periostin works as a downstream regulator of ANGPTL4-mediated ADM/PDAC. Genetic ablation of periostin diminished the ADM/PanIN phenotype induced by ANGPTL4. A high correlation between ANGPTL4 and periostin was confirmed in human samples. These results demonstrate that ANGPTL4 is critical for ADM/PanIN initiation and PDAC progression through the regulation of periostin. Thus, the ANGPTL4/periostin axis is considered a potential target for ADM-derived PDAC.
Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Carcinogênese/metabolismo , Carcinoma de Células Acinares/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Metaplasia/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinogênese/patologia , Carcinoma de Células Acinares/patologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Metaplasia/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Neoplasias PancreáticasRESUMO
Parkinson's disease (PD) is a common neurodegenerative disease with inherent sex differences, and sex-determining region Y (SRY) is a gene located in the Y chromosome which encodes a transcription factor involving the regulation of the dopamine system. In this study, we investigated whether SRY variants were associated with PD in Chinese population. A total of 2058 male patients with PD and 1650 male control participants were recruited, and variants in SRY transcript and flanking regions were genotyped by whole-exome sequencing or whole-genome sequencing. Analysis of rare variants by the optimal sequence kernel association test showed no difference in variant burden of coding, 5'-noncoding and 3'-noncoding between the case and control group. In addition, of the 6 common variants identified, none showed a significant effect in altering PD risk in our population using logistic regression. Our results suggested SRY variants were not associated with the risk of PD in Chinese population.