Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Appl Microbiol Biotechnol ; 102(1): 511, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29159584

RESUMO

After publication of the original article, authors found that there has been a minor mistake in the units of kcat and kcat/Km in Table 2. The units should be 103 min-1 g-1 FAE for kcat and mM-1 min-1 g-1 FAE for kcat/Km. This correction does not affect any conclusions drawn within the article.

2.
Appl Microbiol Biotechnol ; 102(12): 5185-5196, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29687143

RESUMO

The chemical syntheses currently employed for industrial purposes, including in the manufacture of cosmetics, present limitations such as unwanted side reactions and the need for harsh chemical reaction conditions. In order to overcome these drawbacks, novel enzymes are developed to catalyze the targeted bioconversions. In the present study, a methodology for the construction and the automated screening of evolved variants library of a Type B feruloyl esterase from Myceliophthora thermophila (MtFae1a) was developed and applied to generation of 30,000 mutants and their screening for selecting the variants with higher activity than the wild-type enzyme. The library was generated by error-prone PCR of mtfae1a cDNA and expressed in Saccharomyces cerevisiae. Screening for extracellular enzymatic activity towards 4-nitrocatechol-1-yl ferulate, a new substrate developed ad hoc for high-throughput assays of feruloyl esterases, led to the selection of 30 improved enzyme variants. The best four variants and the wild-type MtFae1a were investigated in docking experiments with hydroxycinnamic acid esters using a model of 3D structure of MtFae1a. These variants were also used as biocatalysts in transesterification reactions leading to different target products in detergentless microemulsions and showed enhanced synthetic activities, although the screening strategy had been based on improved hydrolytic activity.


Assuntos
Antioxidantes/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Evolução Molecular , Sordariales/enzimologia , Sordariales/genética , Ligação Proteica , Saccharomyces cerevisiae/genética
3.
Appl Microbiol Biotechnol ; 101(8): 3213-3226, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28078397

RESUMO

Five feruloyl esterases (FAEs; EC 3.1.1.73), FaeA1, FaeA2, FaeB1, and FaeB2 from Myceliophthora thermophila C1 and MtFae1a from M. thermophila ATCC 42464, were tested for their ability to catalyze the transesterification of vinyl ferulate (VFA) with prenol in detergentless microemulsions. Reaction conditions were optimized investigating parameters such as the medium composition, the substrate concentration, the enzyme load, the pH, the temperature, and agitation. FaeB2 offered the highest transesterification yield (71.5 ± 0.2%) after 24 h of incubation at 30 °C using 60 mM VFA, 1 M prenol, and 0.02 mg FAE/mL in a mixture comprising of 53.4:43.4:3.2 v/v/v n-hexane:t-butanol:100 mM MOPS-NaOH, pH 6.0. At these conditions, the competitive side hydrolysis of VFA was 4.7-fold minimized. The ability of prenyl ferulate (PFA) and its corresponding ferulic acid (FA) to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was significant and similar (IC50 423.39 µM for PFA, 329.9 µM for FA). PFA was not cytotoxic at 0.8-100 µM (IC50 220.23 µM) and reduced intracellular reactive oxygen species (ROS) in human skin fibroblasts at concentrations ranging between 4 and 20 µM as determined with the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Pentanóis/metabolismo , Sordariales/enzimologia , Antioxidantes , Hidrolases de Éster Carboxílico/isolamento & purificação , Células Cultivadas , Ácidos Cumáricos/farmacologia , Emulsões , Esterificação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hemiterpenos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espécies Reativas de Oxigênio/metabolismo , Sordariales/metabolismo , Temperatura
4.
Crit Rev Biotechnol ; 36(6): 998-1009, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26381035

RESUMO

The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification.


Assuntos
Lignina/metabolismo , Metagenômica , Animais , Biocatálise , Celulases/metabolismo
5.
Appl Microbiol Biotechnol ; 100(22): 9451-9467, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27714444

RESUMO

Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.


Assuntos
Química Verde/métodos , Lignina/química , Lignina/metabolismo , Biotransformação , Hidrólise
6.
Appl Microbiol Biotechnol ; 100(2): 597-611, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26572518

RESUMO

Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.


Assuntos
Reatores Biológicos , Lignina/metabolismo , Biomassa , Metabolismo dos Carboidratos , Celulose/metabolismo , Produtos Agrícolas/metabolismo , Etanol , Fermentação , Hidrólise , Saccharum/metabolismo , Zea mays/metabolismo
7.
Appl Microbiol Biotechnol ; 100(15): 6519-6543, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27276911

RESUMO

Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry.


Assuntos
Bactérias/metabolismo , Cosmecêuticos/síntese química , Cosmecêuticos/farmacologia , Fungos/metabolismo , Pele/efeitos dos fármacos , Cosméticos/síntese química , Cosméticos/farmacologia , Ésteres/síntese química , Ésteres/farmacologia , Glicosídeos/síntese química , Glicosídeos/farmacologia
8.
Appl Microbiol Biotechnol ; 100(5): 2213-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26521250

RESUMO

This study reports enzymatic hydrolysis of the biomass of the giant reed (Arundo donax L.) after ammonia fibre expansion (AFEX) pretreatment. In particular, the capacity of the arabinofuranosidase from the fungus Pleurotus ostreatus recombinantly expressed in Pichia pastoris rPoAbf, its evolved mutant rPoAbf F435Y/Y446F and the endo-cellulase from Streptomyces sp. G12 CelStrep recombinantly expressed in Escherichia coli to enhance the hydrolysis of AFEX-treated A. donax was investigated, using the corn stover as reference feedstock. The investigated enzymes were assayed using a mixture of purified cellulases (CBHI, CBHII, EGI and ßG), endoxylanases (LX3, LX4) and accessory hemicellulases (LarbF and LßX) as reference enzyme mixture and substituting EGI with rCelStrep and LarbF with rPoAbf or rPoAbf F435Y/Y446F. The use of rPoAbf F435Y/Y446F in the substitution of LarbF led to improvements in sugar conversion, giving a glucan, xylan and arabinan conversion after 72 h of around 62, 63 and 80 %, respectively, similar or higher than those (44, 66 and 55 %) achieved by 72 h hydrolysis with commercial enzymes Novozymes Cellic®, Ctec3 and Htec3. The enzymes rPoAbf, rPoAbf F435Y/Y446F and rCelStrep were also investigated for their effect on hydrolysis of AFEX-pretreated A. donax by addition to commercial enzyme mixture Novozymes Cellic®, Ctec3 and Htec3, and it was shown that the addition of rPoAbf and its evolved mutant rPoAbf F435Y/Y446F enhanced both xylan and arabinan conversions, which achieved 80 % after 6 days of saccharification with rPoAbf F435Y/Y446F.


Assuntos
Amônia/metabolismo , Bactérias/enzimologia , Celulose/metabolismo , Fungos/enzimologia , Hidrolases/metabolismo , Poaceae/química , Poaceae/efeitos dos fármacos , Bactérias/genética , Biotransformação , Fungos/genética , Expressão Gênica , Hidrolases/genética , Hidrólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
9.
Biotechnol Appl Biochem ; 62(6): 727-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25471797

RESUMO

In this study, the recombinant α-L-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis with the aim of elucidating the role of glycosylation on the properties of the enzyme at the level of S160 residue. As a matter of fact, previous mass spectral analyses had led to the localization of a single O-glycosylation at this site. Recombinant expression and characterization of the rPoAbf mutant S160G was therefore performed. It was shown that the catalytic properties are slightly changed by the mutation, with a more evident modification of the Kcat and KM toward the synthetic substrate pN-glucopyranoside. More importantly, the mutation negatively affected the stability of the enzyme at various pHs and temperatures. Circular dichroism (CD) analyses showed a minimum at 210 nm for wild-type (wt) rPoAbf, typical of the beta-sheets structure, whereas this minimum is shifted for rPoAbf S160G, suggesting the presence of an unfolded structure. A similar behavior was revealed when wt rPoAbf was enzymatically deglycosylated. CD structural analyses of both the site-directed mutant and the enzymatically deglycosylated wild-type enzyme indicate a role of the glycosylation at the S160 residue in rPoAbf secondary structure stability.


Assuntos
Glicosídeo Hidrolases/metabolismo , Pleurotus/enzimologia , Sequência de Aminoácidos , Biocatálise , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosilação , Dados de Sequência Molecular , Mutação , Pleurotus/genética
10.
J Chem Technol Biotechnol ; 90(3): 573-581, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25866429

RESUMO

BACKGROUND: Cellulases and xylanases are the key enzymes involved in the conversion of lignocelluloses into fermentable sugars. Western Ghat region (India) has been recognized as an active hot spot for the isolation of new microorganisms. The aim of this work was to isolate new microorganisms producing cellulases and xylanases to be applied in brewer's spent grain saccharification. RESULTS: 93 microorganisms were isolated from Western Ghat and screened for the production of cellulase and xylanase activities. Fourteen cellulolytic and seven xylanolytic microorganisms were further screened in liquid culture. Particular attention was focused on the new isolate Bacillus amyloliquefaciens XR44A, producing xylanase activity up to 10.5 U mL-1. A novel endo-1,4-beta xylanase was identified combining zymography and proteomics and recognized as the main enzyme responsible for B. amyloliquefaciens XR44A xylanase activity. The new xylanase activity was partially characterized and its application in saccharification of brewer's spent grain, pretreated by aqueous ammonia soaking, was investigated. CONCLUSION: The culture supernatant of B. amyloliquefaciens XR44A with xylanase activity allowed a recovery of around 43% xylose during brewer's spent grain saccharification, similar to the value obtained with a commercial xylanase from Trichoderma viride, and a maximum arabinose yield of 92%, around 2-fold higher than that achieved with the commercial xylanase. © 2014 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

11.
Fungal Genet Biol ; 72: 162-167, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25046861

RESUMO

The fungal arabinofuranosidase from Pleurotus ostreatus PoAbf recombinantly expressed in Pichia pastoris rPoAbf and its evolved variant rPoAbf F435Y/Y446F were tested for their effectiveness to enhance the enzymatic saccharification of three lignocellulosic biomasses, namely Arundo donax, corn cobs and brewer's spent grains (BSG), after chemical or chemical-physical pretreatment. All the raw materials were subjected to an alkaline pretreatment by soaking in aqueous ammonia solution whilst the biomass from A. donax was also pretreated by steam explosion. The capability of the wild-type and mutant rPoAbf to increase the fermentable sugars recovery was assessed by using these enzymes in combination with different (hemi)cellulolytic activities. These enzymatic mixtures were either entirely of commercial origin or contained the cellulase from Streptomyces sp. G12 CelStrep recombinantly expressed in Escherichia coli in substitution to the commercial counterparts. The addition of the arabinofuranosidases from P. ostreatus improved the hydrolytic efficiency of the commercial enzymatic cocktails on all the pretreated biomasses. The best results were obtained using the rPoAbf evolved variant and are represented by increases of the xylose recovery up to 56.4%. These data clearly highlight the important role of the accessory hemicellulolytic activities to optimize the xylan bioconversion yields.


Assuntos
Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Pleurotus/enzimologia , Biomassa , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Glicosídeo Hidrolases/genética , Hidrólise , Pichia/enzimologia , Pichia/genética , Pleurotus/genética , Pleurotus/metabolismo , Streptomyces/enzimologia , Streptomyces/genética
12.
Appl Microbiol Biotechnol ; 97(14): 6129-47, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23749120

RESUMO

Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.


Assuntos
Biotecnologia/métodos , Reciclagem/métodos , Resíduos/análise , Biocombustíveis/análise , Biotecnologia/economia , Reciclagem/economia , Eliminação de Resíduos , Resíduos/economia
13.
Curr Genomics ; 14(4): 230-49, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24294104

RESUMO

Research on regulation of cellulases and hemicellulases gene expression may be very useful for increasing the production of these enzymes in their native producers. Mechanisms of gene regulation of cellulase and hemicellulase expression in filamentous fungi have been studied, mainly in Aspergillus and Trichoderma. The production of these extracellular enzymes is an energy-consuming process, so the enzymes are produced only under conditions in which the fungus needs to use plant polymers as an energy and carbon source. Moreover, production of many of these enzymes is coordinately regulated, and induced in the presence of the substrate polymers. In addition to induction by mono- and oligo-saccharides, genes encoding hydrolytic enzymes involved in plant cell wall deconstruction in filamentous fungi can be repressed during growth in the presence of easily metabolizable carbon sources, such as glucose. Carbon catabolite repression is an important mechanism to repress the production of plant cell wall degrading enzymes during growth on preferred carbon sources. This manuscript reviews the recent advancements in elucidation of molecular mechanisms responsible for regulation of expression of cellulase and hemicellulase genes in fungi.

14.
Appl Environ Microbiol ; 78(11): 4037-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467498

RESUMO

The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Lacase/metabolismo , Pleurotus/enzimologia , Pleurotus/crescimento & desenvolvimento , Biotecnologia/métodos , Meios de Cultura , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Lacase/genética , Micologia/métodos , Pleurotus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Microb Cell Fact ; 11: 164, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23267666

RESUMO

BACKGROUND: The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. RESULTS: Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose following a Michaelis-Menten kinetics with a KM of 9.13 mg/ml and a vmax of 3469 µM min-1. The enzyme exhibits a half life of around 24 h and 96 h at 60°C and 50°C, respectively and shows a retention of around 80% of activity after 96 h at 40°C. CONCLUSIONS: In this manuscript, we describe the isolation of a new cellulolytic strain, Streptomyces sp. G12, from industrial waste based compost, the identification of the enzymes putatively responsible for its cellulolytic activity, the cloning and the recombinant expression of the gene coding for the Streptomyces sp. G12 cellulase CelStrep, that was characterized showing to exhibit a relevant thermoresistance increasing its potential for cellulose conversion.


Assuntos
Proteínas de Bactérias/genética , Celulase/genética , Celulose/metabolismo , Clonagem Molecular , Microbiologia do Solo , Streptomyces/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulase/química , Celulase/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Dados de Sequência Molecular , Solo , Streptomyces/química , Streptomyces/genética , Streptomyces/isolamento & purificação
16.
Appl Microbiol Biotechnol ; 94(4): 995-1006, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22080345

RESUMO

An α-L-arabinofuranosidase produced by Pleurotus ostreatus (PoAbf) during solid state fermentation on tomato pomace was identified and the corresponding gene and cDNA were cloned and sequenced. Molecular analysis showed that the poabf gene carries 26 exons interrupted by 25 introns and has an open reading frame encoding a protein of 646 amino acid residues, including a signal peptide of 20 amino acid residues. The amino acid sequence similar to the other α-L-arabinofuranosidases indicated that the enzyme encoded by poabf can be classified as a family 51 glycoside hydrolase. Heterologous recombinant expression of PoAbf was carried out in the yeasts Pichia pastoris and Kluyveromyces lactis achieving the highest production level of the secreted enzyme (180 mg L(-1)) in the former host. rPoAbf produced in P. pastoris was purified and characterized. It is a glycosylated monomer with a molecular weight of 81,500 Da in denaturing conditions. Mass spectral analyses led to the localization of a single O-glycosylation site at the level of Ser160. The enzyme is highly specific for α-L-arabinofuranosyl linkages and when assayed with p-nitrophenyl α-L-arabinofuranoside it follows Michaelis-Menten kinetics with a K (M) of 0.64 mM and a k (cat) of 3,010 min(-1). The optimum pH is 5 and the optimal temperature 40°C. It is worth noting that the enzyme shows a very high stability in a broad range of pH. The more durable activity showed by rPoAbf in comparison to the other α-L-arabinofuranosidases enhances its potential for biotechnological applications and increases interest in elucidating the molecular bases of its peculiar properties.


Assuntos
Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Pleurotus/enzimologia , Pleurotus/genética , Clonagem Molecular , Estabilidade Enzimática , Éxons , Expressão Gênica , Glicosídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Íntrons , Cinética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Solanum lycopersicum/microbiologia , Peso Molecular , Fases de Leitura Aberta , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Temperatura
17.
Cell Mol Life Sci ; 67(3): 369-85, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19844659

RESUMO

Laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) are blue multicopper oxidases that catalyze the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. In fungi, laccases carry out a variety of physiological roles during their life cycle. These enzymes are being increasingly evaluated for a variety of biotechnological applications due to their broad substrate range. In this review, the most recent studies on laccase structural features and catalytic mechanisms along with analyses of their expression are reported and examined with the aim of contributing to the discussion on their structure-function relationships. Attention has also been paid to the properties of enzymes endowed with unique characteristics and to fungal laccase multigene families and their organization.


Assuntos
Lacase/química , Sequência de Aminoácidos , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Fungos/enzimologia , Lacase/genética , Lacase/metabolismo , Dados de Sequência Molecular , Oxirredução , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
18.
Sci Rep ; 11(1): 19309, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588465

RESUMO

With the aim to reach the maximum recovery of bulk and specialty bioproducts while minimizing waste generation, a multi-product biorefinery for ethanol and lactic acid production from the biomass of cyanobacterium Arthrospira platensis was investigated. Therefore, the residual biomass resulting from different pretreatments consisting of supercritical fluid extraction (SF) and microwave assisted extraction with non-polar (MN) and polar solvents (MP), previously applied on A. platensis to extract bioactive metabolites, was further valorized. In particular, it was used as a substrate for fermentation with Saccharomyces cerevisiae LPB-287 and Lactobacillus acidophilus ATCC 43121 to produce bioethanol (BE) and lactic acid (LA), respectively. The maximum concentrations achieved were 3.02 ± 0.07 g/L of BE by the MN process at 120 rpm 30 °C, and 9.67 ± 0.05 g/L of LA by the SF process at 120 rpm 37 °C. An economic analysis of BE and LA production was carried out to elucidate the impact of fermentation scale, fermenter costs, production titer, fermentation time and cyanobacterial biomass production cost. The results indicated that the critical variables are fermenter scale, equipment cost, and product titer; time process was analyzed but was not critical. As scale increased, costs tended to stabilize, but also more product was generated, which causes production costs per unit of product to sharply decrease. The median value of production cost was US$ 1.27 and US$ 0.39, for BE and LA, respectively, supporting the concept of cyanobacterium biomass being used for fermentation and subsequent extraction to obtain ethanol and lactic acid as end products from A. platensis.

19.
Cells ; 9(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872358

RESUMO

The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Glicosilação , Humanos , Processamento de Proteína Pós-Traducional
20.
Curr Genet ; 55(1): 45-57, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19034452

RESUMO

This work was aimed at identifying and at characterizing new Pleurotus ostreatus laccases, in order to individuate the most suitable biocatalysts for specific applications. The existence of a laccase gene clustering was demonstrated in this basidiomycete fungus, and three new laccase genes were cloned, taking advantage of their closely related spatial organization on the fungus genome. cDNAs coding for two of the new laccases were isolated and expressed in the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis, in order to optimize their production and to characterize the recombinant proteins. Analysis of the P. ostreatus laccase gene family allowed the identification of a "laccase subfamily" consisting of three genes. A peculiar intron-exon structure was revealed for the gene of one of the new laccases, along with a high instability of the recombinant enzyme due to lability of its copper ligand. This study allowed enlarging the assortment of P. ostreatus laccases and increasing knowledge to improve laccase production.


Assuntos
Lacase/genética , Lacase/metabolismo , Pleurotus/enzimologia , Sequência de Aminoácidos , Southern Blotting , Cromossomos Artificiais Bacterianos , Clonagem Molecular , DNA Complementar/genética , Expressão Gênica , Lacase/classificação , Dados de Sequência Molecular , Pleurotus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa