Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Neuroinflammation ; 18(1): 71, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722254

RESUMO

Following peripheral nerve injury, multiple cell types, including axons, Schwann cells, and macrophages, coordinate to promote nerve regeneration. However, this capacity for repair is limited, particularly in older populations, and current treatments are insufficient. A critical component of the regeneration response is the network of cell-to-cell signaling in the injured nerve microenvironment. Sheddases are expressed in the peripheral nerve and play a role in the regulation if this cell-to-cell signaling through cleavage of transmembrane proteins, enabling the regulation of multiple pathways through cis- and trans-cellular regulatory mechanisms. Enhanced axonal regeneration has been observed in mice with deletion of the sheddase beta-secretase (BACE1), a transmembrane aspartyl protease that has been studied in the context of Alzheimer's disease. BACE1 knockout (KO) mice display enhanced macrophage recruitment and activity following nerve injury, although it is unclear whether this plays a role in driving the enhanced axonal regeneration. Further, it is unknown by what mechanism(s) BACE1 increases macrophage recruitment and activity. BACE1 has many substrates, several of which are known to have immunomodulatory activity. This review will discuss current knowledge of the role of BACE1 and other sheddases in peripheral nerve regeneration and outline known immunomodulatory BACE1 substrates and what potential roles they could play in peripheral nerve regeneration. Currently, the literature suggests that BACE1 and substrates that are expressed by neurons and Schwann cells are likely to be more important for this process than those expressed by macrophages. More broadly, BACE1 may play a role as an effector of immunomodulation beyond the peripheral nerve.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Macrófagos/patologia , Regeneração Nervosa/genética , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Animais , Humanos , Nervos Periféricos/patologia
2.
Nature ; 487(7408): 443-8, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22801498

RESUMO

Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Axônios/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios Motores/patologia , Degeneração Neural/metabolismo , Oligodendroglia/metabolismo , Simportadores/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Axônios/patologia , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Regulação para Baixo , Heterozigoto , Humanos , Ácido Láctico/metabolismo , Camundongos , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/deficiência , Transportadores de Ácidos Monocarboxílicos/genética , Neurônios Motores/metabolismo , Bainha de Mielina/metabolismo , Transporte Proteico , RNA Interferente Pequeno , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Simportadores/deficiência , Simportadores/genética
3.
Neurobiol Dis ; 106: 147-157, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28687442

RESUMO

Axons of the peripheral nervous system possess the capacity to regenerate following injury. Previously, we showed that genetically knocking out Beta-Site APP-Cleaving Enzyme 1 (BACE1) leads to increased nerve regeneration. Two cellular components, macrophages and neurons, contribute to enhanced nerve regeneration in BACE1 knockout mice. Here, we utilized a transgenic mouse model that overexpresses BACE1 in its neurons to investigate whether neuronal BACE1 has an inverse effect on regeneration following nerve injury. We performed a sciatic nerve crush in BACE1 transgenic mice and control wild-type littermates, and evaluated the extent of both morphological and physiological improvements over time. At the earliest time point of 3days, we observed a significant decrease in the length of axonal sprouts growing out from the crush site in BACE1 transgenic mice. At later times (10 and 15days post-crush), there were significant reductions in the number of myelinated axons in the sciatic nerve and the percentage of re-innervated neuromuscular junctions in the gastrocnemius muscle. Transgenic mice had a functional electrophysiological delay in the recovery up to 8weeks post-crush compared to controls. These results indicate that BACE1 activity levels have an inverse effect on peripheral nerve repair after injury. The results obtained in this study provide evidence that neuronal BACE1 activity levels impact peripheral nerve regeneration. This data has clinical relevance by highlighting a novel drug target to enhance peripheral nerve repair, an area which currently does not have any approved therapeutics.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Axônios/enzimologia , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/enzimologia , Nervo Isquiático/lesões , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Axônios/patologia , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos Transgênicos , Músculo Esquelético/enzimologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Fibras Nervosas Mielinizadas/enzimologia , Fibras Nervosas Mielinizadas/patologia , Junção Neuromuscular/enzimologia , Junção Neuromuscular/patologia , Distribuição Aleatória , Nervo Isquiático/patologia
4.
Neurobiol Dis ; 93: 21-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27080468

RESUMO

Hematogenous macrophages remove myelin debris from injured peripheral nerves to provide a micro-environment conducive to axonal regeneration. Previously, we observed that injured peripheral nerves from Beta-site APP Cleaving Enzyme 1 (BACE1) knockout (KO) mice displayed earlier influx of and enhanced phagocytosis by macrophages when compared to wild-type (WT) mice. These observations suggest that BACE1 might regulate macrophage influx into distal stumps of injured nerves. To determine through which pathway BACE1 influences macrophage influx, we used a mouse inflammation antibody array to assay the expression of inflammation-related proteins in injured nerves of BACE1 KO and WT mice. The most significant change was in expression of tumor necrosis factor receptor 1 (TNFR1) in the distal stump of injured BACE1 KO nerves. Western blotting of protein extracts confirmed increased expression of TNFR1 and its downstream transcriptional factor NFκB in the BACE1 KO distal stumps. Additionally, treatment of WT mice with a BACE1 inhibitor resulted in increased TNFR1 expression and signaling in the distal stump of injured nerves. Exogenous TNFα increased nuclear translocation of p65 NFκB in BACE1 KO tissue and cultured fibroblasts compared with control WT. BACE1 regulates TNFR1 expression at the level of gene expression and not through proteolytic processing. The accelerated macrophage influx in injured nerves of BACE1 KO mice correlates with increased expression and signaling via TNFR1, indicating a link between BACE1 activity and TNFR1 expression/signaling that might contribute to repair of the injured nervous system.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Bainha de Mielina/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Animais , Macrófagos/metabolismo , Camundongos Knockout , Regeneração Nervosa/fisiologia , Nervos Periféricos/metabolismo , Fagocitose/fisiologia
5.
BMC Neurosci ; 17(1): 47, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27401104

RESUMO

BACKGROUND: Peripheral neuropathy is a common and dose-limiting side effect of many cancer chemotherapies. The taxane agents, including paclitaxel (Taxol(®)), are effective chemotherapeutic drugs but cause degeneration of predominantly large myelinated afferent sensory fibers of the peripheral nervous system in humans and animal models. Dorsal root ganglia (DRG) neurons are sensory neurons that have unipolar axons each with two branches: peripheral and central. While taxane agents induce degeneration of peripheral axons, whether they also cause degeneration of central nervous system axons is not clear. Using a mouse model of paclitaxel-induced neuropathy, we investigated the effects of paclitaxel on the central branches of sensory axons. RESULTS: We observed that in the spinal cords of paclitaxel-intoxicated mice, degenerated axons were present in the dorsal columns, where the central branches of DRG axons ascend rostrally. In the peripheral nerves, degenerated myelinated fibers were present in significantly greater numbers in distal segments than in proximal segments indicating that this model exhibits the distal-to-proximal degeneration pattern generally observed in human peripheral nerve disorders. CONCLUSIONS: We conclude that paclitaxel causes degeneration of both the peripheral and central branches of DRG axons, a finding that has implications for the site and mode of action of chemotherapy agents on the nervous system.


Assuntos
Antineoplásicos/toxicidade , Axônios/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Paclitaxel/toxicidade , Animais , Axônios/patologia , Modelos Animais de Doenças , Feminino , Gânglios Espinais/patologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Degeneração Neural/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
6.
Ann Clin Transl Neurol ; 11(2): 328-341, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38146590

RESUMO

OBJECTIVE: To evaluate the longitudinal correlations between sulfatide/lysosulfatide levels and central and peripheral nervous system function in children with metachromatic leukodystrophy (MLD) and to explore the impact of intravenous recombinant human arylsulfatase A (rhASA) treatment on myelin turnover. METHODS: A Phase 1/2 study of intravenous rhASA investigated cerebrospinal fluid (CSF) and sural nerve sulfatide levels, 88-item Gross Motor Function Measure (GMFM-88) total score, sensory and motor nerve conduction, brain N-acetylaspartate (NAA) levels, and sural nerve histology in 13 children with MLD. Myelinated and unmyelinated nerves from an untreated MLD mouse model were also analyzed. RESULTS: CSF sulfatide levels correlated with neither Z-scores for GMFM-88 nor brain NAA levels; however, CSF sulfatide levels correlated negatively with Z-scores of nerve conduction parameters, number of large (≥7 µm) myelinated fibers, and myelin/fiber diameter slope, and positively with nerve g-ratios and cortical latencies of somatosensory-evoked potentials. Quantity of endoneural litter positively correlated with sural nerve sulfatide/lysosulfatide levels. CSF sulfatide levels decreased with continuous high-dose treatment; this change correlated with improved nerve conduction. At 26 weeks after treatment, nerve g-ratio decreased by 2%, and inclusion bodies per Schwann cell unit increased by 55%. In mice, abnormal sulfatide storage was observed in non-myelinating Schwann cells in Remak bundles of sciatic nerves but not in unmyelinated urethral nerves. INTERPRETATION: Lower sulfatide levels in the CSF and peripheral nerves correlate with better peripheral nerve function in children with MLD; intravenous rhASA treatment may reduce CSF sulfatide levels and enhance sulfatide/lysosulfatide processing and remyelination in peripheral nerves.


Assuntos
Leucodistrofia Metacromática , Psicosina/análogos & derivados , Criança , Humanos , Camundongos , Animais , Leucodistrofia Metacromática/tratamento farmacológico , Sulfoglicoesfingolipídeos/farmacologia , Cerebrosídeo Sulfatase , Nervo Isquiático/patologia
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167315, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897255

RESUMO

Anti-ganglioside antibodies (anti-Gg Abs) have been linked to delayed/poor clinical recovery in both axonal and demyelinating forms of Guillain-Barrè Syndrome (GBS). In many instances, the incomplete recovery is attributed to the peripheral nervous system's failure to regenerate. The cross-linking of cell surface gangliosides by anti-Gg Abs triggers inhibition of nerve repair in both in vitro and in vivo axon regeneration paradigms. This mechanism involves the activation of the small GTPase RhoA, which negatively modulates the growth cone cytoskeleton. At present, the identity/es of the receptor/s responsible for transducing the signal that ultimately leads to RhoA activation remains poorly understood. The aim of this work was to identify the transducer molecule responsible for the inhibitory effect of anti-Gg Abs on nerve repair. Putative candidate molecules were identified through proteomic mass spectrometry of ganglioside affinity-captured proteins from rat cerebellar granule neurons (Prendergast et al., 2014). These candidates were evaluated using an in vitro model of neurite outgrowth with primary cultured dorsal root ganglion neurons (DRGn) and an in vivo model of axon regeneration. Using an shRNA-strategy to silence putative candidates on DRGn, we identified tumor necrosis factor receptor 1A protein (TNFR1A) as a transducer molecule for the inhibitory effect on neurite outgrowth from rat/mouse DRGn cultures of a well characterized mAb targeting the related gangliosides GD1a and GT1b. Interestingly, lack of TNFr1A expression on DRGn abolished the inhibitory effect on neurite outgrowth caused by anti-GD1a but not anti-GT1b specific mAbs, suggesting specificity of GD1a/transducer signaling. Similar results were obtained using primary DRGn cultures from TNFR1a-null mice, which did not activate RhoA after exposure to anti-GD1a mAbs. Generation of single point mutants at the stalk region of TNFR1A identified a critical amino acid for transducing GD1a signaling, suggesting a direct interaction. Finally, passive immunization with an anti-GD1a/GT1b mAb in an in vivo model of axon regeneration exhibited reduced inhibitory activity in TNFR1a-null mice compared to wild type mice. In conclusion, these findings identify TNFR1A as a novel transducer receptor for the inhibitory effect exerted by anti-GD1a Abs on nerve repair, representing a significant step forward toward understanding the factors contributing to poor clinical recovery in GBS associated with anti-Gg Abs.

8.
Sci Rep ; 13(1): 5597, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020097

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by degeneration of upper and lower motor neurons that leads to muscle weakness, paralysis, and death, but the effects of disease-causing mutations on axonal outgrowth of neurons derived from human induced pluripotent stem cells (iPSC)-derived motor neurons (hiPSC-MN) are poorly understood. The use of hiPSC-MN is a promising tool to develop more relevant models for target identification and drug development in ALS research, but questions remain concerning the effects of distinct disease-causing mutations on axon regeneration. Mutations in superoxide dismutase 1 (SOD1) were the first to be discovered in ALS patients. Here, we investigated the effect of the SOD1A4V mutation on axonal regeneration of hiPSC-MNs, utilizing compartmentalized microfluidic devices, which are powerful tools for studying hiPSC-MN distal axons. Surprisingly, SOD1+/A4V hiPSC-MNs regenerated axons more quickly following axotomy than those expressing the native form of SOD1. Though initial axon regrowth was not significantly different following axotomy, enhanced regeneration was apparent at later time points, indicating an increased rate of outgrowth. This regeneration model could be used to identify factors that enhance the rate of human axon regeneration.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase-1/genética , Axônios , Superóxido Dismutase/genética , Regeneração Nervosa , Neurônios Motores/fisiologia , Mutação
9.
J Neurosci ; 31(15): 5744-54, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21490216

RESUMO

ß-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is an aspartyl protease best known for its role in generating the amyloid-ß peptides that are present in plaques of Alzheimer's disease. BACE1 has been an attractive target for drug development. In cultured embryonic neurons, BACE1-cleaved N-terminal APP is further processed to generate a fragment that can trigger axonal degeneration, suggesting a vital role for BACE1 in axonal health. In addition, BACE1 cleaves neuregulin 1 type III, a protein critical for myelination of peripheral axons by Schwann cells during development. Here, we asked whether axonal degeneration or axonal regeneration in adult nerves might be affected by inhibition or elimination of BACE1. We report that BACE1 knock-out and wild-type nerves degenerated at a similar rate after axotomy and to a similar extent in the experimental neuropathies produced by administration of paclitaxel and acrylamide. These data indicate N-APP is not the sole culprit in axonal degeneration in adult nerves. Unexpectedly, however, we observed that BACE1 knock-out mice had markedly enhanced clearance of axonal and myelin debris from degenerated fibers, accelerated axonal regeneration, and earlier reinnervation of neuromuscular junctions, compared with littermate controls. These observations were reproduced in part by pharmacological inhibition of BACE1. These data suggest BACE1 inhibition as a therapeutic approach to accelerate regeneration and recovery after peripheral nerve damage.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Ácido Aspártico Endopeptidases/fisiologia , Axônios/fisiologia , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Sistema Nervoso Periférico/fisiologia , Acrilamida/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Antineoplásicos Fitogênicos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Axônios/ultraestrutura , Biotina/análogos & derivados , Biotina/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/fisiologia , Gânglios Espinais/transplante , Imuno-Histoquímica , Bombas de Infusão Implantáveis , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Microscopia Eletrônica , Degeneração Neural/patologia , Junção Neuromuscular/fisiologia , Paclitaxel/farmacologia , Fagocitose/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/transplante , Degeneração Walleriana/patologia
10.
J Peripher Nerv Syst ; 17 Suppl 3: 30-3, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23279429

RESUMO

During 3 years, my research activities in Jack Griffin's laboratory focused on the influence of ß-amyloid precursor protein cleaving enzyme 1 (BACE1) on the degeneration/regeneration of sciatic nerve of mice. Here, potential mechanisms of how BACE1 enzymatic activity influences these processes are discussed.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Regeneração Nervosa/fisiologia , Nervos Periféricos/metabolismo , Fagocitose/fisiologia , Animais , Camundongos
11.
Neural Regen Res ; 16(10): 1901-1910, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33642358

RESUMO

Nervous system disorders are prevalent health issues that will only continue to increase in frequency as the population ages. Dying-back axonopathy is a hallmark of many neurologic diseases and leads to axonal disconnection from their targets, which in turn leads to functional impairment. During the course of many of neurologic diseases, axons can regenerate or sprout in an attempt to reconnect with the target and restore synapse function. In amyotrophic lateral sclerosis (ALS), distal motor axons retract from neuromuscular junctions early in the disease-course before significant motor neuron death. There is evidence of compensatory motor axon sprouting and reinnervation of neuromuscular junctions in ALS that is usually quickly overtaken by the disease course. Potential drugs that enhance compensatory sprouting and encourage reinnervation may slow symptom progression and retain muscle function for a longer period of time in ALS and in other diseases that exhibit dying-back axonopathy. There remain many outstanding questions as to the impact of distinct disease-causing mutations on axonal outgrowth and regeneration, especially in regards to motor neurons derived from patient induced pluripotent stem cells. Compartmentalized microfluidic chambers are powerful tools for studying the distal axons of human induced pluripotent stem cells-derived motor neurons, and have recently been used to demonstrate striking regeneration defects in human motor neurons harboring ALS disease-causing mutations. Modeling the human neuromuscular circuit with human induced pluripotent stem cells-derived motor neurons will be critical for developing drugs that enhance axonal regeneration, sprouting, and reinnervation of neuromuscular junctions. In this review we will discuss compensatory axonal sprouting as a potential therapeutic target for ALS, and the use of compartmentalized microfluidic devices to find drugs that enhance regeneration and axonal sprouting of motor axons.

12.
Ann Clin Transl Neurol ; 8(1): 66-80, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332761

RESUMO

OBJECTIVE: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficient activity of arylsulfatase A (ASA), resulting in severe motor and cognitive dysfunction. This phase 1/2 study evaluated the safety and efficacy of intravenous (IV) recombinant human ASA (rhASA; HGT-1111, previously known as Metazym) in children with MLD. METHODS: Thirteen children with MLD (symptom onset < 4 years of age) were enrolled in an open-label, nonrandomized, dose-escalation trial and received IV rhASA at 50, 100, or 200 U/kg body weight every 14 (± 4) days for 52 weeks (NCT00418561; NCT00633139). Eleven children continued to receive rhASA at 100 or 200 U/kg during a 24-month extension period (NCT00681811). Outcome measures included safety observations, changes in motor and cognitive function, and changes in nerve conduction and morphometry. RESULTS: There were no serious adverse events considered related to IV rhASA. Motor function and developmental testing scores declined during the study in all dose groups; no significant differences were observed between groups. Nerve conduction studies and morphometric analysis indicated that peripheral nerve pathology did not worsen during the study in any dose group. INTERPRETATION: IV rhASA was generally well tolerated. There was no evidence of efficacy in preventing motor and cognitive deterioration, suggesting that IV rhASA may not cross the blood-brain barrier in therapeutic quantities. The relative stability of peripheral nerve function during the study indicates that rhASA may be beneficial if delivered to the appropriate target site and supports the development of rhASA for intrathecal administration in MLD.


Assuntos
Cerebrosídeo Sulfatase/administração & dosagem , Leucodistrofia Metacromática/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Cerebrosídeo Sulfatase/farmacocinética , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Condução Nervosa/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos
13.
Cell Rep ; 34(2): 108610, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440165

RESUMO

Oligodendrocytes (OLs) are important for myelination and shuttling energy metabolites lactate and pyruvate toward axons through their expression of monocarboxylate transporter 1 (MCT1). Recent studies suggest that loss of OL MCT1 causes axonal degeneration. However, it is unknown how widespread and chronic loss of MCT1 in OLs specifically affects neuronal energy homeostasis with aging. To answer this, MCT1 conditional null mice were generated that allow for OL-specific MCT1 ablation. We observe that MCT1 loss from OL lineage cells is dispensable for normal myelination and axonal energy homeostasis early in life. By contrast, loss of OL lineage MCT1 expression with aging leads to significant axonal degeneration with concomitant hypomyelination. These data support the hypothesis that MCT1 is important for neuronal energy homeostasis in the aging central nervous system (CNS). The reduction in OL MCT1 that occurs with aging may enhance the risk for axonal degeneration and atrophy in neurodegenerative diseases.


Assuntos
Axônios/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Bainha de Mielina/metabolismo , Degeneração Neural/metabolismo , Oligodendroglia/metabolismo , Simportadores/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/deficiência , Bainha de Mielina/patologia , Oligodendroglia/patologia , Simportadores/deficiência
14.
J Neuroimmunol ; 349: 577423, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33074142

RESUMO

Following peripheral nerve injury, macrophages are recruited to the injury site from circulation to clear cellular debris. Injured ß-secretase 1 (BACE1) knockout mice have enhanced macrophage recruitment and debris clearance, which may be due to BACE1 activity in macrophages or the hypomyelination observed in BACE1 knockout mice. To assess if BACE1 expression by macrophages mediates enhanced macrophage recruitment we utilized mice with macrophage specific deletion of BACE1 and saw no increase in macrophage recruitment following injury. This study suggests that expression of BACE1 by macrophages may not be essential for increased recruitment observed previously in global BACE1 KO mice.


Assuntos
Secretases da Proteína Precursora do Amiloide/deficiência , Ácido Aspártico Endopeptidases/deficiência , Macrófagos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Células Cultivadas , Feminino , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismos dos Nervos Periféricos/patologia
15.
Neurotherapeutics ; 17(3): 973-988, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32236823

RESUMO

While the peripheral nervous system is able to repair itself following injury and disease, recovery is often slow and incomplete, with no available treatments to enhance the effectiveness of regeneration. Using knock-out and transgenic overexpressor mice, we previously reported that BACE1, an aspartyl protease, as reported by Hemming et al. (PLoS One 4:12, 2009), negatively regulates peripheral nerve regeneration. Here, we investigated whether pharmacological inhibition of BACE may enhance peripheral nerve repair following traumatic nerve injury or neurodegenerative disease. BACE inhibitor-treated mice had increased numbers of regenerating axons and enhanced functional recovery after a sciatic nerve crush while inhibition increased axonal sprouting following a partial nerve injury. In the SOD1G93A ALS mouse model, BACE inhibition increased axonal regeneration with improved muscle re-innervation. CHL1, a BACE1 substrate, was elevated in treated mice and may mediate enhanced regeneration. Our data demonstrates that pharmacological BACE inhibition accelerates peripheral axon regeneration after varied nerve injuries and could be used as a potential therapy.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/enzimologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Axônios/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/genética , Superóxido Dismutase/genética
16.
J Clin Invest ; 130(3): 1506-1512, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32065591

RESUMO

Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway-modulating therapeutics.


Assuntos
Doença de Charcot-Marie-Tooth , Genes Dominantes , Proteína Jagged-1 , Mutação de Sentido Incorreto , Transdução de Sinais/genética , Substituição de Aminoácidos , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Feminino , Glicosilação , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Camundongos , Receptores Notch/genética , Receptores Notch/metabolismo
17.
J Neurosci ; 28(9): 1997-2005, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305234

RESUMO

Amyotrophic lateral sclerosis (ALS), a fatal and progressive neurodegenerative disorder characterized by weakness, muscle atrophy, and spasticity, is the most common adult-onset motor neuron disease. Although the majority of ALS cases are sporadic, approximately 5-10% are familial, including those linked to mutations in SOD1 (Cu/Zn superoxide dismutase). Missense mutations in a dynactin gene (DCTN1) encoding the p150(Glued) subunit of dynactin have been linked to both familial and sporadic ALS. To determine the molecular mechanism whereby mutant dynactin p150(Glued) causes selective degeneration of motor neurons, we generated and characterized mice expressing either wild-type or mutant human dynactin p150(Glued). Neuronal expression of mutant, but not wild type, dynactin p150(Glued) causes motor neuron disease in these animals that are characterized by defects in vesicular transport in cell bodies of motor neurons, axonal swelling and axo-terminal degeneration. Importantly, we provide evidence that autophagic cell death is implicated in the pathogenesis of mutant p150(Glued) mice. This novel mouse model will be instrumental for not only clarifying disease mechanisms in ALS, but also for testing therapeutic strategies to ameliorate this devastating disease.


Assuntos
Transporte Axonal/genética , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/fisiopatologia , Superóxido Dismutase/genética , Fatores Etários , Análise de Variância , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Doença dos Neurônios Motores/mortalidade , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Mutação de Sentido Incorreto , Proteínas de Neurofilamentos/metabolismo , Coloração pela Prata , Medula Espinal , Superóxido Dismutase-1
18.
Eur J Pharmacol ; 840: 89-103, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30268665

RESUMO

Chemotherapy-Induced Peripheral Neurotoxicity (CIPN) is often dose-limiting and impacts life quality and survival of cancer patients. Ghrelin agonists have neuroprotectant effects and may have a role in treating or preventing CIPN. We evaluated the CNS-penetrant ghrelin agonist HM01 in three experimental models of CIPN at doses of 3-30 mg/kg p.o. daily monitoring orexigenic properties, nerve conduction, mechanical allodynia, and intra-epidermal nerve fiber density (IENFD). In a cisplatin-based study, rats were dosed daily for 3 days (0.5 mg/kg i.p.) + HM01. Cisplatin treatment induced mechanical hypersensitivity which was significantly reduced by HM01. In a second study, oxaliplatin was administered to mice (6 mg/kg i.p. 3 times/week for 4 weeks) resulting in significant digital nerve conduction velocity (NCV) deficits and reduction of IENFD. Concurrent HM01 dose dependently prevented the decline in NCV and attenuated the reduction in IENFD. Pharmacokinetic studies showed HM01 accumulation in the dorsal root ganglia and sciatic nerves which reached concentrations > 10 fold that of plasma. In a third model, HM01 was tested in preventive and therapeutic paradigms in a bortezomib-based rat model (0.2 mg/kg i.v., 3 times/week for 8 weeks). In the preventive setting, HM01 blocked bortezomib-induced hyperalgesia and IENFD reduction at all doses tested. In the therapeutic setting, significant effect was observed, but only at the highest dose. Altogether, the robust peripheral nervous system penetration of HM01 and its ability to improve multiple oxaliplatin-, cisplatin-, and bortezomib-induced neurotoxicities suggest that HM01 may be a useful neuroprotective adjuvant for CIPN.


Assuntos
Antineoplásicos/efeitos adversos , Derivados de Benzeno/farmacologia , Grelina/agonistas , Sistema Nervoso/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Cisplatino/efeitos adversos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Condução Nervosa/efeitos dos fármacos , Piperidinas , Ratos
19.
FASEB J ; 20(8): 1230-2, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16705083

RESUMO

Insulin-like growth factor (IGF) 1 receptor (IGF1R)-mediated signaling plays key roles in growth, development, and physiology. Recent studies have shown that there are two distinct ig f1r genes in zebrafish, termed ig f1ra and ig f1rb. In this study, we tested the hypothesis that zebrafish ig f1ra and ig f1rb resulted from a gene duplication event at the ig f1r locus and that this has led to their functional divergence. The genomic structures of zebrafish ig f1ra and ig f1rb were determined and their loci mapped. While zebrafish ig f1ra has 21 exons and is located on linkage group (LG) 18, zebrafish ig f1rb has 22 exons and mapped to LG 7. There is a strong syntenic relationship between the two zebrafish genes and the human IG F1R gene. Using a MO-based loss-of-function approach, we show that both Igf1ra and Igf1rb are required for zebrafish embryo viability and proper growth and development. Although Igf1ra and Igf1rb demonstrated a large degree of functional overlap with regard to cell differentiation in the developing eye, inner ear, heart, and muscle, they also exhibited functional distinction involving a greater requirement for Igf1rb in spontaneous muscle contractility. These findings suggest that the duplicated zebrafish ig f1r genes play largely overlapping but not identical functional roles in early development and provide novel insight into the functional evolution of the IGF1R/insulin receptor gene family.


Assuntos
Duplicação Gênica , Somatomedinas/genética , Somatomedinas/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Sobrevivência Celular , Mapeamento Cromossômico , Orelha Interna/embriologia , Éxons , Olho/embriologia , Marcação de Genes , Coração/embriologia , Humanos , Fator de Crescimento Insulin-Like I , Íntrons , Neurônios Motores/citologia , Contração Muscular , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/fisiologia , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/antagonistas & inibidores
20.
Curr Drug Deliv ; 4(2): 161-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17456035

RESUMO

RNA interference (RNAi) has emerged as a potential therapeutic approach for neurodegenerative diseases, particularly those associated with autosomal dominant patterns of inheritance. In proof of concept experiments, several groups have demonstrated efficacy of using viral vectors expressing short hairpin RNA (shRNA) directed against therapeutically relevant genes in mouse models of neurodegenerative diseases, including spinocerebellar ataxia, Amyotrophic Lateral Sclerosis, Huntington's Disease and amyloidosis (a pathological aspect of Alzheimer's Disease). Although viral-based RNAi has limitations that most likely will preclude its usage in humans, a few recent developments underscore the potential of non-viral-based delivery of relevant RNAi as therapeutics for neurodegenerative diseases. Here, I will review the recent literature on effectiveness of RNAi as a therapeutic strategy in mouse models of neurodegenerative diseases.


Assuntos
Terapia Genética/métodos , Doenças Neurodegenerativas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/biossíntese , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/terapia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Ataxina-1 , Ataxinas , Barreira Hematoencefálica , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/terapia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa