Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colorectal Dis ; 24(12): 1567-1575, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916639

RESUMO

AIM: The aetiology of cryptoglandular anal fistula (AF) is poorly understood. Evidence suggests that persistence and/or recurrence of the disease is more related to inflammatory than infectious factors. The aim of this study was to investigate the immune profile of cryptoglandular AF and to perform a histopathological characterization. METHOD: Fistulectomy was performed in all patients; healthy ischioanal fat from the same patients was used as a control. Samples were evaluated by the Luminex xMAP system for the detection of 27 analytes. AF tissues were analysed using immunofluorescence. Staining was performed using primary antibodies to identify M1 inflammatory and M2 anti-inflammatory macrophages. Selective staining of total T lymphocytes and different T lymphocyte subsets was performed. RESULTS: Twenty patients with AF underwent a fistulectomy. Specific cytokine pathways differentiated AF from healthy tissue: pro-inflammatory cytokines interleukin (IL)-1ß, IL-4, IL-8 and IL-17 and the anti-inflammatory cytokine IL-10 were overexpressed in AF compared with controls. Chemokines involved in macrophage recruitment (CCL2, CCL3, CCL4) were higher in AF than in healthy fatty tissue. Moreover, we showed that Tc17 cells characterize AF patients, thus confirming the enzyme-linked immunosorbent assay data. Furthermore, elevated infiltration of CD68+ myeloid cells and a reduction of the M1/M2 ratio characterize AF patients. CONCLUSION: A combination of inflammatory cytokines, chemokines and growth factors reside in the wound microenvironment of AF patients. For the first time an important prevalence of Tc17 cells and a reduction in the M1/M2 ratio was observed, thus suggesting new insights into the immunological characterization of AF patients.


Assuntos
Citocinas , Fístula Retal , Humanos , Quimiocinas/metabolismo , Macrófagos/metabolismo , Fístula Retal/etiologia , Fístula Retal/cirurgia
2.
J Cell Mol Med ; 22(2): 1202-1213, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29105277

RESUMO

Myofibroblasts are key fibrogenic cells responsible for excessive extracellular matrix synthesis characterizing the fibrotic lesion. In liver fibrosis, myofibroblasts derive either from activation of hepatic stellate cells (HSC) and portal fibroblasts (PF), or from the activation of fibroblasts that originate from ductular epithelial cells undergoing epithelial-mesenchymal transition. Ductular cells can also indirectly promote myofibroblast generation by activating TGF-ß, the main fibrogenic growth factor, through αvß6 integrin. In addition, after liver injury, liver sinusoidal cells can lose their ability to maintain HSC quiescence, thus favouring HSC differentiation towards myofibroblasts. The amniotic membrane and epithelial cells (hAEC) derived thereof have been shown to decrease hepatic myofibroblast levels in rodents with liver fibrosis. In this study, in a rat model of liver fibrosis, we investigated the effects of hAEC on resident hepatic cells contributing to myofibroblast generation. Our data show that hAEC reduce myofibroblast numbers with a consequent reduction in fibronectin and collagen deposition. Interestingly, we show that hAEC strongly act on specific myofibroblast precursors. Specifically, hAEC reduce the activation of PF rather than HSC. In addition, hAEC target reactive ductular cells by inhibiting their proliferation and αvß6 integrin expression, with a consequent decrease in TGF-ß activation. Moreover, hAEC counteract the transition of ductular cells towards fibroblasts, while it does not affect injury-induced and fibrosis-promoting sinusoidal alterations. In conclusion, among the emerging therapeutic applications of hAEC in liver diseases, their specific action on PF and ductular cells strongly suggests their application in liver injuries involving the expansion and activation of the portal compartment.


Assuntos
Âmnio/citologia , Células Epiteliais/transplante , Hepatócitos/patologia , Cirrose Hepática/patologia , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/patologia , Células Estreladas do Fígado/patologia , Humanos , Fígado/patologia , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo
3.
Stem Cells Transl Med ; 9(9): 1023-1035, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32452646

RESUMO

Growing evidence suggests a mechanistic link between inflammation and the development and progression of fibrotic processes. Mesenchymal stromal cells derived from the human amniotic membrane (hAMSCs), which display marked immunomodulatory properties, have been shown to reduce bleomycin-induced lung fibrosis in mice, possibly by creating a microenvironment able to limit the evolution of chronic inflammation to fibrosis. However, the ability of hAMSCs to modulate immune cells involved in bleomycin-induced pulmonary inflammation has yet to be elucidated. Herein, we conducted a longitudinal study of the effects of hAMSCs on alveolar and lung immune cell populations upon bleomycin challenge. Immune cells collected through bronchoalveolar lavage were examined by flow cytometry, and lung tissues were used to study gene expression of markers associated with different immune cell types. We observed that hAMSCs increased lung expression of T regulatory cell marker Foxp3, increased macrophage polarization toward an anti-inflammatory phenotype (M2), and reduced the antigen-presentation potential of macrophages and dendritic cells. For the first time, we demonstrate that hAMSCs markedly reduce pulmonary B-cell recruitment, retention, and maturation, and counteract the formation and expansion of intrapulmonary lymphoid aggregates. Thus, hAMSCs may hamper the self-maintaining inflammatory condition promoted by B cells that continuously act as antigen presenting cells for proximal T lymphocytes in injured lungs. By modulating B-cell response, hAMSCs may contribute to blunting of the chronicization of lung inflammatory processes with a consequent reduction of the progression of the fibrotic lesion.


Assuntos
Âmnio/citologia , Linfócitos B/imunologia , Diferenciação Celular , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/terapia , Animais , Células Apresentadoras de Antígenos/metabolismo , Bleomicina , Agregação Celular , Quimiocinas/metabolismo , Humanos , Inflamação/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/complicações , Lesão Pulmonar/terapia , Subpopulações de Linfócitos/imunologia , Camundongos , Fibrose Pulmonar/complicações , Linfócitos T/imunologia
4.
Ann Clin Lab Sci ; 45(3): 270-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26116590

RESUMO

Human amniotic-derived cells (hAMCs) have recently raised interest for their differentiation capability and immunomodulatory properties. To assess the feasibility of hAMCs therapeutic treatment during fetal development, we explored the localization of cells derived from the human amniotic membrane in rat organs after in utero transplantation. Rats were sacrificed at different time points and their organs were analyzed for the distribution of hAMCs by immunohistochemistry using an antibody against Human Cytoplasm and through detection of human DNA. Immunohistochemical and PCR analysis showed that most of the rat tissues presented human cells/DNA suggesting a widespread migration of hAMCs after transplantation. We developed an efficient target-antigen detection method based on an immunohistochemical technique that resulted to be highly specific and sensitive to identify the hAMCs into rat tissues.


Assuntos
Âmnio/citologia , Âmnio/transplante , Antígenos/metabolismo , Animais , DNA/metabolismo , Feminino , Feto/metabolismo , Humanos , Imuno-Histoquímica , Especificidade de Órgãos , Reação em Cadeia da Polimerase , Ratos Sprague-Dawley , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa