Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 204: 108461, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516761

RESUMO

PURPOSE: Fibrillin-1 and -2 are major components of tissue microfibrils that compose the ciliary zonule and cornea. While mutations in human fibrillin-1 lead to ectopia lentis, a major manifestation of Marfan syndrome (MFS), in mice fibrillin-2 can compensate for reduced/lack of fibrillin-1 and maintain the integrity of ocular structures. Here we examine the consequences of a heterozygous dominant-negative mutation in the Fbn1 gene in the ocular system of the mgΔlpn mouse model for MFS. METHODS: Eyes from mgΔlpn and wild-type mice at 3 and 6 months of age were analyzed by histology. The ciliary zonule was analyzed by scanning electron microscopy (SEM) and immunofluorescence. RESULTS: Mutant mice presented a significantly larger distance of the ciliary body to the lens at 3 and 6 months of age when compared to wild-type, and ectopia lentis. Immunofluorescence and SEM corroborated those findings in MFS mice, revealing a disorganized mesh of microfibrils on the floor of the ciliary body. Moreover, mutant mice also had a larger volume of the anterior chamber, possibly due to excess aqueous humor. Finally, losartan treatment had limited efficacy in improving ocular phenotypes. CONCLUSIONS: In contrast with null or hypomorphic mutations, expression of a dominant-negative form of fibrillin-1 leads to disruption of microfibrils in the zonule of mice. This in turn causes lens dislocation and enlargement of the anterior chamber. Therefore, heterozygous mgΔlpn mice recapitulate the major ocular phenotypes of MFS and can be instrumental in understanding the development of the disease.


Assuntos
Modelos Animais de Doenças , Fibrilina-1/genética , Síndrome de Marfan/genética , Mutação/genética , Animais , Corpo Ciliar/metabolismo , Corpo Ciliar/ultraestrutura , Ectopia do Cristalino/genética , Proteínas da Matriz Extracelular/metabolismo , Cristalino/metabolismo , Cristalino/ultraestrutura , Ligamentos/ultraestrutura , Masculino , Síndrome de Marfan/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microfibrilas/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fenótipo
2.
Stem Cell Res ; 54: 102434, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34174776

RESUMO

Marfan Syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in the FBN1 gene. To investigate the molecular mechanisms of pathogenesis for the syndrome, we genetically modified the FBN1 gene in a line of induced pluripotent stem cells (hiPSCs) derived from a healthy donor using the CRISPR/Cas9 gene editing technology. The sublines described here were characterized according to established criteria and were shown to maintain pluripotency, three germ layer differentiation potential and genomic integrity. These clones can now be used to better understand the pathogenesis of MFS in different cell types.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Diferenciação Celular , Fibrilina-1/genética , Humanos , Síndrome de Marfan/genética , Mutação
3.
Stem Cell Res ; 54: 102407, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34062330

RESUMO

Marfan Syndrome (MFS) is a pleiotropic and autosomal dominant condition caused by pathogenic variants in FBN1. Although fully penetrant, clinical variability is frequently observed among patients and there are only few genotype-phenotype correlations described so far. Here, we describe the generation and characterization of hiPSC lines derived from two unrelated MFS patients harboring heterozygous variants in FBN1. Human iPSCs were obtained from erythroblasts reprogrammed with episomal vectors carrying the reprogramming factors OCT4, SOX2, KLF4, c-MYC and LIN-28, and characterized according to established criteria. Differentiated cells demonstrated different patterns of fibrillin-1 expression suggesting different molecular mechanisms between the two patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Diferenciação Celular , Linhagem Celular , Fibrilina-1/genética , Heterozigoto , Humanos , Fator 4 Semelhante a Kruppel , Síndrome de Marfan/genética , Mutação
4.
Bone ; 152: 116073, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34171513

RESUMO

Marfan syndrome (MFS) is an autosomal dominant disease affecting cardiovascular, ocular and skeletal systems. It is caused by mutations in the fibrillin-1 (FBN1) gene, leading to structural defects of connective tissue and increased activation of TGF-ß. Angiotensin II (ang-II) is involved in TGF-ß activity and in bone mass regulation. Inhibition of TGF-ß signaling by blockage of the ang-II receptor 1 (AT1R) via losartan administration leads to improvement of cardiovascular and pulmonary phenotypes, but has no effect on skeletal phenotype in the haploinsufficient mouse model of MFS mgR, suggesting a distinct mechanism of pathogenesis in the skeletal system. Here we characterized the skeletal phenotypes of the dominant-negative model for MFS mgΔlpn and tested the effect of inhibition of ang-II signaling in improving those phenotypes. As previously shown, heterozygous mice present hyperkyphosis, however we now show that only males also present osteopenia. Inhibition of ang-II production by ramipril minimized the kyphotic deformity, but had no effect on bone microstructure in male mutant animals. Histological analysis revealed increased thickness of the anterior longitudinal ligament (ALL) of the spine in mutant animals (25.8 ± 6.3 vs. 29.7 ± 7.7 µm), coupled with a reduction in type I (164.1 ± 8.7 vs. 139.0 ± 4.4) and increase in type III (86.5 ± 10.2 vs. 140.4 ± 5.6) collagen in the extracellular matrix of this ligament. In addition, we identified in the MFS mice alterations in the erector spinae muscles which presented thinner muscle fibers (1035.0 ± 420.6 vs. 655.6 ± 239.5 µm2) surrounded by increased area of connective tissue (58.17 ± 6.52 vs. 105.0 ± 44.54 µm2). Interestingly, these phenotypes were ameliorated by ramipril treatment. Our results reveal a sex-dependency of bone phenotype in MFS, where females do not present alterations in bone microstructure. More importantly, they indicate that hyperkyphosis is not a result of osteopenia in the MFS mouse model, and suggest that incompetent spine ligaments and muscles are responsible for the development of that phenotype.


Assuntos
Cifose , Síndrome de Marfan , Animais , Feminino , Fibrilina-1/genética , Losartan/farmacologia , Masculino , Síndrome de Marfan/tratamento farmacológico , Síndrome de Marfan/genética , Camundongos , Fator de Crescimento Transformador beta
5.
Eur J Hum Genet ; 28(9): 1292-1296, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514132

RESUMO

Marfan syndrome (MFS) is a connective tissue disease caused by variants in the FBN1 gene. Nevertheless, other genes influence the manifestations of the disease, characterized by high clinical variability even within families. We mapped modifier loci for cardiovascular and skeletal manifestations in the mg∆loxPneo mouse model for MFS and the synthenic loci in the human genome. Corroborating our findings, one of those loci was identified also as a modifier locus in MFS patients. Here, we investigate the HSPG2 gene, located in this region, as a candidate modifier gene for MFS. We show a correlation between Fbn1 and Hspg2 expression in spinal column and aorta in non-isogenic mg∆loxPneo mice. Moreover, we show that mice with severe phenotypes present lower expression of Hspg2 than those mildly affected. Thus, we propose that HSPG2 is a strong candidate modifier gene for MFS and its role in modulating disease severity should be investigated in patients.


Assuntos
Genes Modificadores , Proteoglicanas de Heparan Sulfato/genética , Síndrome de Marfan/genética , Animais , Aorta/metabolismo , Aorta/patologia , Fibrilina-1/genética , Fibrilina-1/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Síndrome de Marfan/patologia , Camundongos , Fenótipo , Medula Espinal/metabolismo , Medula Espinal/patologia
6.
PLoS One ; 14(11): e0224581, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725753

RESUMO

AIMS: Cardiovascular manifestations are a major cause of mortality in Marfan syndrome (MFS). Animal models that mimic the syndrome and its clinical variability are instrumental for understanding the genesis and risk factors for cardiovascular disease in MFS. This study used morphological and ultrastructural analysis to the understanding of the development of cardiovascular phenotypes of the the mgΔloxPneo model for MFS. METHODS AND RESULTS: We studied 6-month-old female mice of the 129/Sv background, 6 wild type (WT) and 24 heterozygous animals from the mgΔloxPneo model. Descending thoracic aortic aneurysm and/or dissection (dTAAD) were identified in 75% of the MFS animals, defining two subgroups: MFS with (MFS+) and without (MFS-) dTAAD. Both subgroups showed increased fragmentation of elastic fibers, predominance of type I collagen surrounding the elastic fiber and fragmentation of interlaminar fibers when compared to WT. However, only MFS animals with spine tortuosity developed aortic aneurysm/dissection. The aorta of MFS+ animals were more tortuous compared to those of MFS- and WT mice, possibly causing perturbations of the luminal blood flow. This was evidenced by the detection of diminished aorta-blood flow in MFS+. Accordingly, only MFS+ animals presented a process of concentric cardiac hypertrophy and a significantly decreased ratio of left and right ventricle lumen area. CONCLUSIONS: We show that mgΔloxPneo model mimics the vascular disease observed in MFS patients. Furthermore, the study indicates role of thoracic spine deformity in the development of aorta diseases. We suggest that degradation of support structures of the aortic wall; deficiency in the sustenance of the thoracic vertebrae; and their compression over the adjacent aorta resulting in disturbed blood flow is a triad of factors involved in the genesis of dissection/aneurysm of thoracic aorta.


Assuntos
Aneurisma da Aorta Torácica , Síndrome de Marfan , Coluna Vertebral , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Tecido Elástico/metabolismo , Feminino , Humanos , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patologia , Camundongos , Camundongos Transgênicos , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa