Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 113(8): 1515-1524, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36935379

RESUMO

Ascochyta lentis, the causal organism of Ascochyta blight (AB) of lentil (Lens culinaris), has been shown to produce an avirulence effector protein that mediates AB resistance in certain lentil cultivars. The two known forms of the effector protein were identified from a biparental mapping population between isolates that have reciprocal virulence on 'PBA Hurricane XT' and 'Nipper'. The effector AlAvr1-1 was described for the PBA Hurricane XT-avirulent isolate P94-24 and AlAvr1-2 characterized in the PBA Hurricane XT-virulent isolate AlKewell. Here, we performed a genome-wide association study to identify other loci associated with AB for a differential set of lentil cultivars from a diverse panel of isolates collected in the Australian lentil-growing regions from 2013 to 2020. The chromosome 3 AlAvr1 locus was strongly associated with the PBA Hurricane XT, 'Indianhead', and Nipper disease responses, but one other genomic region on chromosome 11 was also associated with the Nipper disease trait. Our results corroborate earlier work that identified the AlAvr1 locus for field-collected isolates that span the period before release and after widespread adoption of PBA Hurricane XT. A multiplex PCR assay was developed to differentiate the genes AlAvr1-1 and AlAvr1-2 to predict PBA Hurricane XT avirulence and pathotype designation in the diversity panel. Increasing numbers of the PBA Hurricane XT-virulent pathotype 2 isolates across that time indicate strong selection for isolates with the AlAvr1-2 allele. Furthermore, one other region of the A. lentis genome may contribute to the pathogen-host interaction for lentil AB.

2.
J Exp Bot ; 67(14): 4339-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27296246

RESUMO

We measured yield components, nitrogen fixation, soil nitrogen uptake and carbon isotope composition (δ(13)C) in a collection of chickpea genotypes grown in environments where water availability was the main source of yield variation. We aimed to quantify the phenotypic plasticity of these traits using variance ratios, and to explore their genetic basis using FST genome scan. Fifty-five genes in three genomic regions were found to be under selection for plasticity of yield; 54 genes in four genomic regions for the plasticity of seeds per m(2); 48 genes in four genomic regions for the plasticity of δ(13)C; 54 genes in two genomic regions for plasticity of flowering time; 48 genes in five genomic regions for plasticity of nitrogen fixation and 49 genes in three genomic regions for plasticity of nitrogen uptake from soil. Plasticity of yield was related to plasticity of nitrogen uptake from soil, and unrelated to plasticity of nitrogen fixation, highlighting the need for closer attention to nitrogen uptake in legumes. Whereas the theoretical link between δ(13)C and transpiration efficiency is strong, the actual link with yield is erratic due to trade-offs and scaling issues. Genes associated with plasticity of δ(13)C were identified that may help to untangle the δ(13)C-yield relationship. Combining a plasticity perspective to deal with complex G×E interactions with FST genome scan may help understand and improve both crop adaptation to stress and yield potential.


Assuntos
Cicer/metabolismo , Fixação de Nitrogênio , Adaptação Fisiológica , Radioisótopos de Carbono/metabolismo , Cicer/genética , Cicer/crescimento & desenvolvimento , Produção Agrícola , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fixação de Nitrogênio/genética , Fenótipo , Água
3.
Microbiol Resour Announc ; 12(9): e0048923, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37526441

RESUMO

We report the complete genome sequence of Rhizobium leguminosarum bv. viciae SRDI969, an acid-tolerant, efficient nitrogen-fixing microorganism of Vicia faba. The 6.8 Mbp genome consists of a chromosome and four plasmids, with the symbiosis and nitrogen fixation genes encoded on the chromosome.

4.
Front Plant Sci ; 13: 918211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982697

RESUMO

Ascochyta fabae Speg. is a serious foliar fungal disease of faba bean and a constraint to production worldwide. This study investigated the phenotypic and genotypic diversity of the A. fabae pathogen population in southern Australia and the pathogenic variability of the population was examined on a differential set of faba bean cultivars. The host set was inoculated with 154 A. fabae isolates collected from 2015 to 2018 and a range of disease reactions from high to low aggressiveness was observed. Eighty percent of isolates collected from 2015 to 2018 were categorized as pathogenicity group (PG) PG-2 (pathogenic on Farah) and were detected in every region in each year of collection. Four percent of isolates were non-pathogenic on Farah and designated as PG-1. A small group of isolates (16%) were pathogenic on the most resistant differential cultivars, PBA Samira or Nura, and these isolates were designated PG-3. Mating types of 311 isolates collected between 1991 and 2018 were determined and showed an equal ratio of MAT1-1 and MAT1-2 in the southern Australian population. The genetic diversity and population structure of 305 isolates were examined using DArTseq genotyping, and results suggest no association of genotype with any of the population descriptors viz.: collection year, region, host cultivar, mating type, or PG. A Genome-Wide Association Study (GWAS) was performed to assess genetic association with pathogenicity traits and a significant trait-associated genomic locus for disease in Farah AR and PBA Zahra, and PG was revealed. The high frequency of mating of A. fabae indicated by the wide distribution of the two mating types means changes to virulence genes would be quickly distributed to other genotypes. Continued monitoring of the A. fabae pathogen population through pathogenicity testing will be important to identify any increases in aggressiveness or emergence of novel PGs. GWAS and future genetic studies using biparental mating populations could be useful for identifying virulence genes responsible for the observed changes in pathogenicity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa