Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Exp Bot ; 68(18): 5093-5102, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29040628

RESUMO

Miscanthus has potential as a bioenergy crop but the rapid development of high-yielding varieties is challenging. Previous studies have suggested that phenology and canopy height are important determinants of biomass yield. Furthermore, while genome-wide prediction was effective for a broad range of traits, the predictive ability for yield was very low. We therefore developed models clarifying the genetic associations between spring emergence, consequent canopy phenology and dry biomass yield. The timing of emergence was a moderately strong predictor of early-season elongation growth (genetic correlation >0.5), but less so for growth later in the season and for the final yield (genetic correlation <0.1). In contrast, early-season canopy height was consistently more informative than emergence for predicting biomass yield across datasets for two species in Miscanthus and two growing seasons. We used the associations uncovered through these models to develop selection indices that are expected to increase the response to selection for yield by as much as 21% and improve the performance of genome-wide prediction by an order of magnitude. This multivariate approach could have an immediate impact in operational breeding programmes, as well as enable the integration of crop growth models and genome-wide prediction.


Assuntos
Genoma de Planta/genética , Genômica , Modelos Estatísticos , Poaceae/genética , Agricultura , Biocombustíveis , Biomassa , Cruzamento , Genótipo , Fenótipo , Poaceae/crescimento & desenvolvimento , Estações do Ano
2.
Plant Biotechnol J ; 12(9): 1193-206, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25431199

RESUMO

Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications.


Assuntos
Biocombustíveis , Produtos Agrícolas/crescimento & desenvolvimento , Engenharia Genética , Desenvolvimento Vegetal , Plantas/microbiologia , Simbiose
3.
New Phytol ; 201(4): 1227-1239, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24308815

RESUMO

• Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. • We generated over 100,000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. • Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10,000-20,000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. • Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible.


Assuntos
Biomassa , Parede Celular/metabolismo , Estudo de Associação Genômica Ampla , Poaceae/citologia , Poaceae/genética , Característica Quantitativa Herdável , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta/genética , Genótipo , Geografia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Análise de Componente Principal , Mapeamento por Restrição , Análise de Sequência de DNA
4.
Environ Microbiol Rep ; 16(2): e13259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649235

RESUMO

The seed-endophytic bacterial community is a potentially beneficial and heritable fraction of the plant microbiome. Its utilization as a sustainable crop improvement strategy could be especially valuable for species such as hemp, where production is being scaled up and new challenges will be faced in managing crop productivity and health. However, little is known about the makeup and variation of the hemp seed microbiome. This study profiled the endophytic bacterial communities harboured by 16 hemp cultivars sourced from commercial suppliers in Europe. A 16S rDNA amplicon sequencing approach identified 917 amplicon sequence variants across samples. Taxonomic classification of sequences revealed 4 phyla and 87 genera to be represented in the dataset. Several genera were widespread while some were specific to one or a few cultivars. Flavobacterium, Pseudomonas, and Pantoea were notable in their high overall abundance and prevalence, but community composition was variable and no one taxon was universally abundant, suggesting a high degree of flexibility in community assembly. Taxonomic composition and alpha diversity differed among cultivars, though further work is required to understand the relative influence of hemp genetic factors on community structure. The taxonomic profiles presented here can be used to inform further work investigating the functional characteristics and potential plant-growth-promoting traits of seed-borne bacteria in hemp.


Assuntos
Bactérias , Cannabis , Endófitos , RNA Ribossômico 16S , Sementes , Cannabis/microbiologia , Cannabis/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sementes/microbiologia , Endófitos/genética , Endófitos/classificação , Endófitos/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiota , Filogenia , Biodiversidade , Europa (Continente) , DNA Bacteriano/genética
5.
J Exp Bot ; 64(2): 541-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23183254

RESUMO

Miscanthus sacchariflorus is a fast-growing C(4) perennial grass that can naturally hybridize with M. sinensis to produce interspecific hybrids, such as the sterile triploid M.× giganteus. The creation of such hybrids is essential for the rapid domestication of this novel bioenergy crop. However, progress has been hindered by poor understanding of the environmental cues promoting floral transition in M. sacchariflorus, which flowers less readily than M. sinensis. The purpose of this work was to identify the flowering requirements of M. sacchariflorus genotypes in order to expedite the introduction of new germplasm optimized to different environments. Six M. sacchariflorus accessions collected from a range of latitudes were grown under controlled photoperiod and temperature conditions, and flowering, biomass, and morphological phenotypic data were captured. Results indicated that M. sacchariflorus, irrespective of origin, is a quantitative short-day plant. Flowering under static long days (15.3h daylength), compared with shorter photoperiods, was delayed by an average 61 d, with an average associated increase of 52% of above-ground biomass (DM plant(-1)). Timing of floral initiation occurred between photoperiods of 14.2h and 12.1h, and accumulated temperatures of 553-1157 °C above a base temperature of 10 °C. Miscanthus sacchariflorus flowering phenology closely resembles that of Sorghum and Saccharum, indicating potentially similar floral pathways and suggesting that determination of the underlying genetic mechanisms will be facilitated by the syntenic relationships existing between these important C(4) grasses.


Assuntos
Flores/crescimento & desenvolvimento , Poaceae/genética , Biocombustíveis , Biomassa , Flores/genética , Flores/efeitos da radiação , Luz , Fotoperíodo , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação , Temperatura
6.
J Exp Bot ; 64(8): 2373-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23599277

RESUMO

Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed.


Assuntos
Biocombustíveis , Poaceae/crescimento & desenvolvimento , Agricultura , Biomassa , Genótipo , Fenótipo , Poaceae/genética , Análise de Componente Principal , Característica Quantitativa Herdável , Fatores de Tempo
7.
J Exp Bot ; 64(14): 4143-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24064927

RESUMO

To accelerate domestication of Miscanthus, an important energy crop, 244 replicated genotypes, including two different species and their hybrids, were analysed for morphological traits and biomass yield over three growing seasons following an establishment phase of 2 years in the largest Miscanthus diversity trial described to date. Stem and leaf traits were selected that contributed both directly and indirectly to total harvested biomass yield, and there was variation in all traits measured. Morphological diversity within the population was correlated with dry matter yield (DMY) both as individual traits and in combination, in order to determine the respective contributions of the traits to biomass accumulation and to identify breeding targets for yield improvement. Predictive morphometric analysis was possible at year 3 within Miscanthus sinensis genotypes but not between M. sinensis, Miscanthus sacchariflorus, and interspecific hybrids. Yield is a complex trait, and no single simple trait explained more than 33% of DMY, which varied from 1 to 5297 g among genotypes within this trial. Associating simple traits increased the power of the morphological data to predict yield to 60%. Trait variety, in combination, enabled multiple ideotypes, thereby increasing the potential diversity of the crop for multiple growth locations and end uses. Both triploids and interspecific hybrids produced the highest mature yields, indicating that there is significant heterosis to be exploited within Miscanthus that might be overlooked in early selection screens within years 1-3. The potential for optimizing biomass yield by selecting on the basis of morphology is discussed.


Assuntos
Biocombustíveis , Conservação dos Recursos Naturais , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Biológicos , Biodiversidade , Biomassa , Produtos Agrícolas/genética , Genótipo , Modelos Lineares , Folhas de Planta/anatomia & histologia , Ploidias , Característica Quantitativa Herdável , Especificidade da Espécie
8.
F1000Res ; 10: 29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732433

RESUMO

Miscanthus sacchariflorus (Maxim.) Hack. is a highly productive C4 perennial rhizomatous biofuel grass crop. M. sacchariflorus is among the most widely distributed species in the genus, particularly at cold northern latitudes, and is one of the progenitor species of the commercial M. × giganteus genotypes. We generated a 2.54 Gb whole-genome assembly of the diploid M. sacchariflorus cv. "Robustus 297" genotype, which represented ~59% of the expected total genome size. We later anchored this assembly using the chromosomes from the M. sinensis genome to generate a second assembly with improved contiguity. We annotated 86,767 and 69,049 protein-coding genes in the unanchored and anchored assemblies, respectively. We estimated our assemblies included ~85% of the M. sacchariflorus genes based on homology and core markers. The utility of the new reference for genomic studies was evidenced by a 99% alignment rate of the RNA-seq reads from the same genotype.  The raw data, unanchored and anchored assemblies, and respective gene annotations are publicly available.


Assuntos
Biocombustíveis , Poaceae , Genótipo , Poaceae/genética
9.
Biotechnol Biofuels ; 14(1): 98, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874976

RESUMO

BACKGROUND: Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity and low chemical input requirements. Within an interspecific Miscanthus cross, progeny with high biomass yield were shown to have low concentrations of starch and sucrose but high concentrations of fructose. We performed a transcriptional RNA-seq analysis between selected Miscanthus hybrids with contrasting values for these phenotypes to clarify how these phenotypes are genetically controlled. RESULTS: We observed that genes directly involved in the synthesis and degradation of starch and sucrose were down-regulated in high-yielding Miscanthus hybrids. At the same time, glycolysis and export of triose phosphates were up-regulated in high-yielding Miscanthus hybrids. These differentially expressed genes and biological functions were regulated by a well-connected network of less than 25 co-regulated transcription factors. CONCLUSIONS: Our results evidence a direct relationship between high expression of essential enzymatic genes in the starch and sucrose pathways and co-expression with their transcriptional regulators, with high starch concentrations and lower biomass production. The strong interconnectivity between gene expression and regulators, chemotype and agronomic traits opens the door to use the expression of well-characterised genes associated with carbohydrate metabolism, particularly in the starch and sucrose pathway, for the early selection of high biomass-yielding genotypes from large Miscanthus populations.

10.
Glob Change Biol Bioenergy ; 13(1): 98-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33381230

RESUMO

Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.

11.
J Am Assoc Lab Anim Sci ; 59(2): 221-225, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32075698

RESUMO

Infrared thermometry (IRTM) is a noncontact method to measure temperature. The purpose of this study was to compare rectal temperature and IRTM in healthy anesthetized swine, with the hypothesis that IRTM would be an accurate, noninvasive alternative for rectal temperature measurement. Two groups of female Yorkshire-cross swine (n = 14 and n = 12) were sedated with Tiletamine-zolazepam (0.5 mg/kg) for blood collection during a routine physical examination. While sedated, rectal temperatures were measured using a SureTemp Plus 690 (Welch Allyn) and IRTM measurements were taken using a FLIR E5 thermal imaging camera. The 2 anatomic sites used for thermography measurements were the area surrounding the eye and the neck at the base of the ear. The distance from the imaging camera and the animal during IRTM measurements was 24 to 32 inches, a distance that would allow camera access in a standard swine enclosure. The infrared imaging camera's surface temperature measurement exhibited a proportional bias when compared with the rectal temperature. All rectal temperature measurements were between 98.7 °F to 101.3 °F, with a mean temperature of 100.4 °F. IRTM tended to underestimate rectal temperatures at lower values, and overestimate rectal temperatures at higher values by approximately (+) or (-) 0.8 °F of rectal temperature. Infrared thermometry can provide a quick noninvasive assessment of the body surface temperature, without the need for animal handling or restraint, but should not be considered an accurate replacement for rectal temperature measurement.


Assuntos
Temperatura Corporal , Reto , Suínos/fisiologia , Termômetros/veterinária , Termometria/veterinária , Adulto , Animais , Feminino , Humanos , Masculino , Termometria/instrumentação , Termometria/métodos
12.
Nat Commun ; 11(1): 5442, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116128

RESUMO

Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.


Assuntos
Poaceae/genética , Biomassa , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Genômica , Modelos Genéticos , Filogenia , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Poliploidia , Saccharum/genética , Estações do Ano , Sorghum/genética
13.
BMC Plant Biol ; 9: 70, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19500419

RESUMO

BACKGROUND: Helitrons are a class of transposable elements which have been identified in a number of species of plants, animals and fungi. They are unique in their proposed rolling-circle mode of replication, have a highly variable copy-number and have been implicated in the restructuring of coding sequences both by their insertion into existing genes and by their incorporation of transcriptionally competent gene fragments. Helitron discovery depends on identifying associated DNA signature sequences and comprehensive evaluation of helitron contribution to a particular genome requires detailed computational analysis of whole genome sequence. Therefore, the role which helitrons have played in modelling non-model plant genomes is largely unknown. RESULTS: Cloning of the flowering gene GIGANTEA (GI) from a BAC library of the Pooideae grass Lolium perenne (perennial ryegrass) identified the target gene and several GI pseudogene fragments spanning the first five exons. Analysis of genomic sequence 5' and 3' of one these GI fragments revealed motifs consistent with helitron-type transposon insertion, specifically a putative 5'-A (downward arrow) T-3' insertion site containing 5'-TC and CTAG-3' borders with a sub-terminal 16 bp hairpin. Screening of a BAC library of the closely related grass species Festuca pratensis (meadow fescue) indicated similar helitron-associated GI fragments present in this genome, as well as non-helitron associated GI fragments derived from the same region of GI. In order to investigate the possible extent of ancestral helitron-activity in L. perenne, a methylation-filtered GeneThresher genomic library developed from this species was screened for potential helitron 3' hairpin sequences associated with a 3'-CTRR motif. This identified 7 potential helitron hairpin-types present between at least 9 and 51 times within the L. perenne methylation-filtered library. CONCLUSION: This represents evidence for a possible ancestral role for helitrons in modelling the genomes of Lolium and related species.


Assuntos
Elementos de DNA Transponíveis , Genes de Plantas , Lolium/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Sequência Conservada , DNA de Plantas/genética , Festuca/genética , Genoma de Planta , Biblioteca Genômica , Dados de Sequência Molecular , Proteínas de Plantas/genética , Pseudogenes , Alinhamento de Sequência
14.
BMC Plant Biol ; 9: 94, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19619287

RESUMO

BACKGROUND: Polyphenol oxidase (PPO) activity in plants is a trait with potential economic, agricultural and environmental impact. In relation to the food industry, PPO-induced browning causes unacceptable discolouration in fruit and vegetables: from an agriculture perspective, PPO can protect plants against pathogens and environmental stress, improve ruminant growth by increasing nitrogen absorption and decreasing nitrogen loss to the environment through the animal's urine. The high PPO legume, red clover, has a significant economic and environmental role in sustaining low-input organic and conventional farms. Molecular markers for a range of important agricultural traits are being developed for red clover and improved knowledge of PPO genes and their structure will facilitate molecular breeding. RESULTS: A bacterial artificial chromosome (BAC) library comprising 26,016 BAC clones with an average 135 Kb insert size, was constructed from Trifolium pratense L. (red clover), a diploid legume with a haploid genome size of 440-637 Mb. Library coverage of 6-8 genome equivalents ensured good representation of genes: the library was screened for polyphenol oxidase (PPO) genes.Two single copy PPO genes, PPO4 and PPO5, were identified to add to a family of three, previously reported, paralogous genes (PPO1-PPO3). Multiple PPO1 copies were identified and characterised revealing a subfamily comprising three variants PPO1/2, PPO1/4 and PPO1/5. Six PPO genes clustered within the genome: four separate BAC clones could be assembled onto a predicted 190-510 Kb single BAC contig. CONCLUSION: A PPO gene family in red clover resides as a cluster of at least 6 genes. Three of these genes have high homology, suggesting a more recent evolutionary event. This PPO cluster covers a longer region of the genome than clusters detected in rice or previously reported in tomato. Full-length coding sequences from PPO4, PPO5, PPO1/5 and PPO1/4 will facilitate functional studies and provide genetic markers for plant breeding.


Assuntos
Catecol Oxidase/genética , Genoma de Planta , Família Multigênica , Trifolium/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Dosagem de Genes , Biblioteca Gênica , Dados de Sequência Molecular , Análise de Sequência de DNA , Trifolium/enzimologia
15.
Glob Change Biol Bioenergy ; 9(5): 891-908, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28515789

RESUMO

In commercially grown Miscanthus × giganteus, despite imposing a yield penalty, postwinter harvests improve quality criteria for thermal conversion and crop sustainability through remobilization of nutrients to the underground rhizome. We examined 16 Miscanthus genotypes with different flowering and senescence times for variation in N, P, K, moisture, ash, Cl and Si contents, hypothesizing that early flowering and senescence could result in improved biomass quality and/or enable an earlier harvest of biomass (in autumn at peak yield). Ideal crop characteristics at harvest are low N and P to reduce future fertilizer inputs, low K and Cl to reduce corrosion in boilers, low moisture to reduce spoilage and transportation costs, and low Si and ash to reduce slagging and consequent operational downtime. Stems and leaves were harvested during summer, autumn and then the following spring after overwinter ripening. In spring, stem contents of N were 30-60 mg kg-1, P were 203-1132 mg kg-1, K were 290-4098 mg kg-1, Cl were 10-23 mg kg-1 and moisture were 12-38%. Notably, late senescence resulted in increased N, P, K, Cl, moisture and ash contents, and should therefore be avoided for thermochemical conversion. Flowering and senescence led to overall improved combustion quality, where flowered genotypes tended towards lower P, K, Cl and moisture contents; marginally less, or similar, N, Si and ash contents; and a similar higher heating value, compared to those that had not flowered. Such genotypes could potentially be harvested in the autumn. However, one genotype that did not flower in our trial exhibited sufficiently low N and K content in autumn to meet the EN plus wood pellet standards for those traits, and some of the lowest P, moisture and ash contents in our trial, and is thus a target for future research and breeding.

16.
Front Plant Sci ; 7: 1620, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917177

RESUMO

This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha-1y-1 and 429 GJ ha-1y-1, respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of -78€ t-1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.

18.
Bioenergy Res ; 5(1): 149-157, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-26366245

RESUMO

Increasing the extractable sugar yield from perennial crops is one strategy to generate renewable fuels such as bio-ethanol. Lolium perenne L. (perennial ryegrass) can contain significant (>30% dry matter) water-soluble sugars in the form of polymeric fructan which is readily extracted, broken down and fermented to bio-ethanol. A population of L. perenne generated from four parents which differed in water-soluble carbohydrate (WSC) content was subjected to multiple rounds of selection and recombination on the basis of early spring WSC content to produce a high WSC, and a low WSC population. A control population was generated by selecting the same number of plants at random. The alleles present at six candidate gene loci were analysed before and after selection and correlated to WSC content. Significant differences in the allele frequency of L. perenne soluble-acid invertase1:4 were observed between the three populations with one haplotype significantly associated with the high WSC C2S+ population (after three rounds of selection and two rounds of recombination). Moreover, WSC content was also associated with biomass accumulation. Thus, in addition to a 2.84-fold increase in WSC yield, the C2S+ population also had 1.48-fold more biomass per plant, resulting in 3.9-fold higher WSC yield per plant than the control population.

19.
PLoS One ; 7(3): e33821, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22439001

RESUMO

We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS), identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7), presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.


Assuntos
Poaceae/genética , Biocombustíveis , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Diploide , Duplicação Gênica , Marcadores Genéticos , Genoma de Planta , Poaceae/classificação , Polimorfismo de Nucleotídeo Único , Sorghum/classificação , Sorghum/genética , Especificidade da Espécie , Tetraploidia
20.
Nat Protoc ; 2(7): 1661-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17641631

RESUMO

Bacterial artificial chromosome (BAC) libraries are the large DNA insert libraries of choice and valuable tools for the map-based cloning of target quantitative trait loci, physical mapping, molecular cytogenetics and comparative genomics. The protocol reported here is a simplified method used to produce and screen BAC libraries from Brachypodium species and other related grasses. Intact nuclei, containing high molecular weight (HMW) DNA, are isolated and embedded in agarose plugs. The HMW DNA is digested using an appropriate restriction enzyme and size-fractionated using pulsed-field gel electrophoresis. The DNA is isolated by dialysis, ligated into pre-prepared vector and electroporated into competent Escherichia coli cells. A PCR-based method for screening the library is also described. The entire protocol takes at least 6 weeks to complete.


Assuntos
Bactérias/genética , Cromossomos Artificiais Bacterianos/química , Genoma Bacteriano , Poaceae/genética , Cloroplastos/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Vetores Genéticos , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa